DOI QR코드

DOI QR Code

Self-assembly of Retinoic Acid-conjugated Poly(Amino Acid)'s Derivative

레티노익산이 접목된 폴리아미노산 유도체의 자기조립 현상

  • Han, Sa Ra (Dept. of Chemical Engineering, Soongsil University) ;
  • Lee, Hyeongyeong (Dept. of Chemical Engineering, Soongsil University) ;
  • Kim, Hee-Jin (Dept. of Chemical Engineering, Soongsil University) ;
  • Cho, Yoon Na (Dept. of Chemical Engineering, Soongsil University) ;
  • Lee, Seung-Jun (Dept. of Chemical and Biomolecular Eng., KAIST) ;
  • Zhoh, Choon-Koo (Dept. of Chemical Engineering, Soongsil University) ;
  • Jeong, Jae Hyun (Dept. of Chemical Engineering, Soongsil University)
  • Received : 2016.12.02
  • Accepted : 2016.12.19
  • Published : 2016.12.30

Abstract

In this study, a poly (amino acid)s derivative grafted with retinoic acids, which could form self-assemblies in an aqueous solution, was successfully synthesized. The synthesized amphiphilic poly (amino acid)s were controlled with 5, 10, 30 mol% substitution of retinoic acid. Then, the amphiphilic poly (amino acid)s were self-assembled by inter/intra molecular stacking of retinoic acids in an aqueous solution. Also, the increasing the degree of substitution (DS) of retinoic acids decreased the size of self-assembled nanoparticles and induced structural transition to bilayer structure from spherical structure. The retinol was stably encapsulated into a core of self-assembled nanoparticle with 10 mol% of DS. This strategy to prepare the self-assemblies of amphiphilic polyaspartamide will serve to improve the efficiency of targeted delivery for a functional cosmetic with various biological modalities.

본 연구에서는 수용액상에서 자기조립 나노입자를 형성할 수 있는 레티노익산이 접목된 양친성 폴리아미노산 유도체를 합성하였다. 합성한 양친성 폴리아미노산은 레티노익산의 접목도가 각각 5, 10, 30 mol%가 되도록 조절하였다. 수용액 상에서 양친성 폴리아미노산은 소수성 레티노익산의 분자 결합에 의해 안정한 자기조립 나노입자를 형성하였다. 자기조립 나노입자는 레티노익산의 접목도가 증가할수록 크기는 작아지고 형태는 구형에서 이중층 구조로 전이되었다. 또한 접목도가 10%일 때, 자기조립 입자의 구조 붕괴 없이 레티놀의 포집 및 전달이 가장 효과적인 것을 확인하였다. 접목도가 제어된 자기조립입자는 레티놀을 안정적으로 포집할 수 있기 때문에 주름개선제 및 다양한 기능성 화장품 전달체로 활용될 수 있다.

Keywords

References

  1. H. Torma, W. Lontz, W. Liu, O. Rollman, and A. Vahlquist, Expression of cytosolic retinoid-binding protein genes in human skin biopsies and cultured keratinocytes and fibroblasts, Br. J. Dermatol., 131(2), 243 (1994). https://doi.org/10.1111/j.1365-2133.1994.tb08499.x
  2. L. Beckenbach, J. M. Baron, H. F. Merk, H. Loffler, and P. M. Amann, Retinoid treatment of skin diseases, Eur. J. Dermatol., 25(5), 384 (2015).
  3. A. Kawada, N. Konishi, T. Momma, N. Oiso, and S. Kawara, Evaluation of anti-wrinkle effects of a novel cosmetic containing retinol using the guideline of the Japan cosmetic industry association, J. Dermatol., 36(11), 583 (2009). https://doi.org/10.1111/j.1346-8138.2009.00716.x
  4. R. R. Ryan, E. B. Amelia, and R. C. Philip, Topical retinoids: therapeutic mechanisms in the treatment of photodamaged skin, J. Clin. Dermatol., 17(3), 265 (2016). https://doi.org/10.1007/s40257-016-0185-5
  5. H. Kim, N. Kim, S. Jung, J. Mun, J. Kim, B. Kim, J. Lee, H. Ryoo, and H. Jung, Improvement in skin wrinkles from the use of photostable retinyl retinoate: a randomized controlled trial, Br. J. Dermatol., 162(3), 97 (2009).
  6. M. S. Lee, M. D. Lee, H. S. Sin, S. J. Um, J. W. Kim, and B. K. Koh, A newly synthesized photostable retinol derivative (retinl N-formyl aspartamate) for photodamaged skin: prodilometric evaluation of 24-week study, J. Am. Acad. Dermatol., 55(2), 220 (2006). https://doi.org/10.1016/j.jaad.2006.01.013
  7. C. K. Zhoh, C. G. Han, and W. J. Hong, The study on antioxidation of ratinol, J. Soc. Cosmet. Sci. Korea, 28(1), 58 (2002).
  8. D. G. Kim, Y. I. Jeong, C. Y. Choi, S. H. Roh, S. K. Kang, M. K. Jang, and J. W. Nah, Retinol-encapsulated low molecular water-soluble chitosan nanoparticles, Int. J. Pharm., 319(1), 130 (2006). https://doi.org/10.1016/j.ijpharm.2006.03.040
  9. Y. N. Cho, H. J. Kim, S. W. Cho, S. G. Shin, and J. H. Jeong, Biomimetic self-assembly of porphyrin-conjugated polyaspartamide in aqueous solution, Polym. Korea, 40(2), 163 (2016). https://doi.org/10.7317/pk.2016.40.2.163
  10. J. H. Jeong, H. S. Kang, S. R. Yang, and J. D. Kim, Polymer micelle-like aggregates of novel amphiphilic biodegradable poly (asparagine) grafted with poly (caprolactone), Polymer, 44(3), 583 (2003). https://doi.org/10.1016/S0032-3861(02)00816-9
  11. J. H. Jeong, H. S. Kang, S. R. Yang, K. N. Park, and J. D. Kim, Biodegradable poly (asparagine) grafted with poly (caprolactone) and the effect of substitution on self-aggregation, Colloid. Surface. A, 264(1), 187 (2005). https://doi.org/10.1016/j.colsurfa.2005.05.019
  12. H. Kang, J. D. Kim, S. H. Han, and I. S. Chang, Self-aggregates of poly (2-hydroxyethyl aspartamide) copolymers loaded with methotrexate by physical and chemical entrapments, J. Control. Release, 81(1), 135 (2002). https://doi.org/10.1016/S0168-3659(02)00058-5
  13. J. H. Jeong, C. Y. Cha, A. Kaczmarowski, J. Haan, S. N. Oh, and H. J. Kong, Polyaspartamide vesicle induced by metallic nanoparticles, Soft Matter, 8(7), 2237 (2012). https://doi.org/10.1039/c2sm06763c
  14. B. B. Madhabi, K. S. Vennela, P. Masana, and B. Madipoju, Enhanced transdermal drug penetration of curcumin via ethosomes, Malay. J. Pharm. Sci., 11(1), 49 (2013).
  15. D. E. Discher and A. Eisenberg, Polymer vesicles, Science, 297(5583), 967 (2002). https://doi.org/10.1126/science.1074972