사육조건에 따른 능성어, Epinephelus septemfasciatus, 수정란의 난질 및 아미노산 조성

Egg Quality and Amino Acid Composition of Fertilized Eggs of Sevenband Grouper, Epinephelus septemfasciatus per Farming Condition

  • 투고 : 2016.09.13
  • 심사 : 2016.12.12
  • 발행 : 2016.12.31

초록

본 연구는 능성어 부상란과 침강란의 아미노산 분석을 통하여 난의 생존에 필요한 요소를 구명하고, 사육환경 및 먹이에 따른 난질의 변화를 난의 생화학적 분석을 통하여 난질에 영향을 미칠수 있는 요소를 구명하기 위하여 수행하였다. 그 결과 육상수조에서 사육하는 것보다 해상가두리에서 사육할 때 난질이 우수하였고, 서로 다른 먹이를 공급한 후 배란을 유도하여 난의 특징을 조사하였다. 그 결과 배합사료만 공급하거나 배합사료와 생사료를 혼합급이한 것보다는 생사료만을 급이한 어미에게서 우수한 수정란을 얻을 수 있었다. 그리고 부상란과 침강란의 아미노산을 분석한 결과 부상란에서 유리아미노산의 함량이 높았으며, 배합사료만 급이하거나 배합사료와 생사료를 혼합 급이한 경우 보다는 생사료만을 공급한 경우 수정란의 유리아미노산의 함량이 높았다. 즉, 난질이 우수할수록 유리아미노산의 함량이 높았다.

This study aims to investigate egg quality and amino acid composition of buoyant and non-buoyant eggs and evaluate egg quality of sevenband grouper, Epinephelus septemfasciatus. Amino acid analysis of eggs was conducted to investigate what elements were necessary for the survival and good quality of egg depending on farming condition and different diet. We analyzed amino acid from buoyant eggs and non-buoyant eggs, farming conditions (tank and sea cage), and different dietary conditions (formulated feed, formulated feed+raw fish-based moist pellets, and raw fish-based moist pellets). Egg quality was the best in a sea cage and when raw fish-based moist pellets (MP) were fed. In addition, egg quality with formulated and MP was better than that with formulated feed. As a result of amino acid analysis of eggs, buoyant eggs were containing more free amino acid than non-buoyant eggs. Also, eggs with MP were containing more free amino acid than those with formulated feed and MP. Eggs with mixed formulated feed and MP were containing more free amino acid than formulated feed. In conclusion, amino acid was helpful to improve egg quality, and egg quality can be controlled by farming conditions and feed.

키워드

참고문헌

  1. Brooks, S., C.R. Tyler and J.P. Sumpter. 1997. Egg quality in fish: what makes a good egg? Rev. Fish Biol. Fish., 7: 387-416. https://doi.org/10.1023/A:1018400130692
  2. Clarke, M., C.C. Parrish and R.W. Penney. 2010. Free amino acids as an indicator of egg viability in Atlantic Cod (Gadus morhua). Bull. Aquac. Assoc. Can., 108: 6-9.
  3. Czesny, S., J. Rinchard and K. Dabrowski. 2005. Intrapopulation variation in egg lipid and fatty acid composition and embryo viability in a naturally spawning walleye population from an inland reservoir. N. Am. J. Fish. Manag., 25: 122-129. https://doi.org/10.1577/M03-202.1
  4. Finn, R.N., H.J. Fyhn and M.S. Evjen. 1995a. Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). I. Respiration and nitrogen metabolism. Mar. Biol., 124: 355-369. https://doi.org/10.1007/BF00363909
  5. Finn, R.N., J.R. Henderson and H.J. Fyhn. 1995b. Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). II. Lipid metabolism and enthalpy balance. Mar. Biol., 124: 371-379. https://doi.org/10.1007/BF00363910
  6. Fraser, A., J. Sargent, J. Gamble and P. MacLachlan. 1987. Lipid class and fatty acid composition as indicators of the nutritional condition of larval Atlantic herring. Am. Fish. Soc. Sympos., 2: 129-143.
  7. Fyhn, H.J. and B. Serigstad. 1987. Free amino acids as energy substrate in developing eggs and larvae of the cod Gadus morhua. Mar. Biol., 96: 335-341. https://doi.org/10.1007/BF00412514
  8. Fyhn, H.J. 1990. Energy production in marine fish larvae with emphasis on free amino acids as a potential fuel. In: Mellinger, J. (ed.), Nutrition in Wild and Domestic Animals. Karger, Basel, 176-192p.
  9. Harikrishnan, R., J.S. Kim, C. Balasundaram and M.S. Heo. 2012. Immunomodulatory effects of chitin and chitosan enriched diets in Epinephelus bruneus against Vibrio alginolyticus infection. Aquaculture, 326-329, 46-52. https://doi.org/10.1016/j.aquaculture.2011.11.034
  10. His, E. and D. Maurer. 1988. Shell growth and gross biochemical composition of oyster larvae (Crassostrea gigas) in the field. Aquaculture, 69: 185-194. https://doi.org/10.1016/0044-8486(88)90195-0
  11. Hoar, W. 1969. Reproduction, In: Fish Physiology 3. In: Hoar, W. and D. Randall (eds.), Academic Press, New York, U.S.A., 1-72.
  12. Holland, D.L. and B.E. Spencer. 1973. Biochemical changes in fed and starved oysters, Ostrea edulis L. during larval development, metamorphosis and early spat growth. J. Mar. Biol. Assoc. UK, 53, 287-298. https://doi.org/10.1017/S002531540002227X
  13. Hong, C.G., J.K. Cho, J.Y. Park, M.H. Son, J.M. Park, K.H. Han and H.W. Kang. 2015. Ovulation Induction Effect of Sevenband Grouper, Epinephelus septemfasciatus by Treating Hormones. JFMSE J., 27: 981-989. https://doi.org/10.13000/JFMSE.2015.27.4.981
  14. Hur, Y.B., E.K. Kim, Y.S. Lim, C.Y. Jeon, K.C. Cho and J.I. Myeng. 2011. Differences in Egg QUality and Larval Development among Four Population of Sea Squirt Halocynthia roretzi Adults. Kor. J. Fish Aquat. Sci., 44: 516-523.
  15. James, C.M., S.A. AL-Thobaiti, B.M. Rasem and M.H. Carlos. 1998. Comparative growth of brown-marvled grouper, Epinephelus fuscoguttatus and camouflage grouper, E. polyphekadioin under hatchery and grow out culture conditions. Asian Fisheries Science, 11: 133-147.
  16. Kayano, Y. 1988. Development of mouth parts and feeding in the larval and juvenile stages of red spotted grouper Epinephelus akaara. Saibai. Giken., 3: 55-60.
  17. Kjorsvik, E., A. Mangor Jensen and T. Holmefjord. 1990. Egg quality in fishes. In: Blaxter, J.H.S. and A.J.Southward (eds.), Advances in Marine Biology. Academic press, London, 71-113p.
  18. Kohno, H., S. Diani and A. Supriatna. 1993. Morphological development of larval and juvenile grouper, Epinephelus fuscoguttatus. Japanese Journal of Ichthyology, 40: 307-316.
  19. Lanes, C.F.C., T.T. Bizuayehu, S. Bolla, C. Martins, J.D.M.O. Fernandes, A. Bianchini, V. Kiron and Babiak, I. 2012. Biochemical composition and performance of Atlantic cod (Gadus morhua L.) eggs and larvae obtained from farmed and wild broodstocks. Aquaculture, 324-325: 267-275. https://doi.org/10.1016/j.aquaculture.2011.10.036
  20. Lee, Y.D. and K.M. Go. 2003. Aquatic industrialization by development of reproductive technology of sevenband grouper, Epinephelus septemfasciatus. Jeju univ., 1-86.
  21. Lochmann, S.E., K.J. Goodwin, R.T. Lochmann, N.M. Stone and T. Clemment. 2007. Volume and lipid, fatty acid, and amino acid composition of golden shiner eggs during a spawning season. N. Am. J. Aquaculture, 69: 116-126. https://doi.org/10.1577/A05-094.1
  22. Mejri, S., C. Andet, G.W. Vandenberg, C.C. Parrish and R. Tremblay. 2014. Biochemical egg quality in a captive walleye (Sander vitreus) broodstock population relative to ovulation timing following hormonal treatment. Aquaculture, 431: 99-106. https://doi.org/10.1016/j.aquaculture.2014.03.022
  23. Morehead, D.T., P.R. Hart, G.A. Dunstan, M. Brown and N.W, Pankhurst. 2001. Differences in egg quality between wild striped trumpeter (Latris lineata) and captive striped trumpeter that were fed different diets. Aquaculture, 192: 39-53. https://doi.org/10.1016/S0044-8486(00)00443-9
  24. Nocillado, J.N., V.D. Penaflorida and I.G. Borlongan. 2000. Measures of egg quality in induced spawns of the Asian sea bass, Lates calcarifer Bloch Fish Physiology and Biochemistry, 22: 1-9. https://doi.org/10.1023/A:1007881231664
  25. Okumura, S., K. Okamoto, R. Oonori and A. Nakazono. 2002. Spawning behavior and artificial fertilization in captive reared red spotted grouper, Epinephelus akaara. Aquaculture, 206: 165-173. https://doi.org/10.1016/S0044-8486(01)00722-0
  26. Park, J.Y., J.M. Park, C.G. Hong, K.M. Kim and J.K. Cho. 2016. Physiological and Biochemical Response of Blood on Low Temperature Stress in Sevenband Grouper, Epinephelus septemfasciatus. Korean J. Ichthyol., 28: 1-8.
  27. Rani, M.S. 2005. Prediction of larval viability based on egg quality parameters and early cleavage patterns in the experiments of triploidy induction in Atlantic cod, Gadus morhua L. M. Sc. Thesis, Univ. Tromso, Norway, 64.
  28. Ringo, E., R. Olsenand and B. Boe. 1987. Initial feeding of wolf fish (Anarhichas lupus L.) fry. Aquaculture, 62: 33-43. https://doi.org/10.1016/0044-8486(87)90182-7
  29. Ronnestad, I., H.J. Fyhn and K. Gravningen. 1992. The importance of free amino acids to the energy metabolism of eggs and larvae of turbot (Scophthalmus maximus). Mar. Biol., 114: 517-525. https://doi.org/10.1007/BF00357249
  30. Ronnestad, I. and H.J. Fyhn. 1993. Metabolic aspects of free amino acids in developing marine fish eggs. Rev. Fish. Sci., 1: 239-259. https://doi.org/10.1080/10641269309388544
  31. Ronnestad, I., W. Koven, A. Tandler, M. Harel and H.J. Fyhn. 1994. Energy metabolism during development of eggs and larvae of gilthead sea bream (Sparus aurata). Mar. Biol., 120: 187-196. https://doi.org/10.1007/BF00349678
  32. Ronnestad, I., W. Koven, A. Tandler, H. Mordechai and H.J. Fyhn. 1998. Utilisation of yolk fuels in developing eggs and larvae of European sea bass (Dicentrarchus labrax). Aquaculture, 162: 157-170. https://doi.org/10.1016/S0044-8486(98)00203-8
  33. Ronnestad, I., A.A. Thorsen and R.N. Finn. 1999. Fish larval nutrition: a review of recent advances in the role of amino acids. Aquaculture, 177: 201-216. https://doi.org/10.1016/S0044-8486(99)00082-4
  34. Ruttanap-ornvareesakul, Y., Y. Sakakura and A. Hagiwara. 2007. Effect of tank proportions on survival of seven-band grouper Epinephelus septemfasciatus (Thunberg) and devil stinger Inimicus japonicus (Cuvier) larvae. Aquaculture Research, 38: 193-200. https://doi.org/10.1111/j.1365-2109.2007.01653.x
  35. Sakakura, Y., S. Shiotani, H. Chuda and A. Hagiwara. 2006. Improvement of the survival in the seven-band grouper Epinephelus septemfasciatus larvae by optimizing aeration and water inlet in the mass-scale rearing tank. Fisheries Science, 72: 939-947. https://doi.org/10.1111/j.1444-2906.2006.01241.x
  36. Sargent, J., R. Henderson and D. Tocher. 1989. The lipids. In: Fish Nutrition. Halver, J.E. and R.W. Hardy (eds.), Academic Press, London, U.K., 257-274.
  37. Seoka, M., S. Yamada, Y. Iwata, T. Yanagisawa, T. Nakagawa and H. Kumai. 2003. Differences in the biochemical content of buoyant and non-buoyant eggs of the Japanese eel, Anguilla japonica. Aquaculture, 216: 355-362. https://doi.org/10.1016/S0044-8486(02)00459-3
  38. Shields, R.J., N.P. Brown and N.R. Bromage. 1997. Blastomere morphology as a predictive measure of fish egg viability. Aquaculture, 155: 1-12. https://doi.org/10.1016/S0044-8486(97)00105-1
  39. Sivaloganathan, B., J. Walford and T.J. Lam. 1998. Free amino acids and energy metabolism in eggs and larvae of sea bass, Lates calcarifer. Mar. Biol., 131: 695-702. https://doi.org/10.1007/s002270050361
  40. Srivastava, R.K. and J.A. Brown. 1991. The biochemical characteristics and hatching performance of cultured and wild Atlantic salmon (Salmo salar) eggs. Can. J. Zool., 69: 2436-2441. https://doi.org/10.1139/z91-342
  41. Srivastava, R.K. and J.A. Brown. 1992. Assessment of egg quality in Atlantic salmon, Salmo salar, treated with testosterone-II. Amino acids. Comp. Biochem. Physiol., 103: 397-402. https://doi.org/10.1016/0300-9629(92)90600-U
  42. Srivastava, R.K. and J.A. Brown. 1993. Assessment of egg quality in Atlantic salmon, Salmo salar, treated with testosterone: biochemical composition. Can. J. Zool., 70: 109-115.
  43. Toledo, J.D., A. Nagi and D. Javellana. 1993. Successive spawning of grouper, Epinephelus suillus (Valenciennes), in a tank and a floating net cage. Aquaculture, 115: 361-367. https://doi.org/10.1016/0044-8486(93)90149-S
  44. Tomas, C., J.H. Bae and S.B. Hur. 2005. Chemical composition and size of floating and sunken eggs of olive flounder Paralichthys olivaceus. J. Fish. Sci. Technol, 8: 132-137.
  45. Vallin, L. and A. Nissling. 1998. Cell morphology as an indicator of viability of cod eggs results from an experimental study. Fish. Res., 38: 247-255. https://doi.org/10.1016/S0165-7836(98)00157-X
  46. Waldock, M.J. and I.A. Nascimento. 1979. The triacyglycerol composition of Crassostrea gigas larvae fed on different algal diets. Mar. Biol. Lett., 1: 77-86.
  47. Watanabe, T., S. Ohhashi, A. Itoh, C. Kitajima and S. Fujita. 1984. Effect of nutritional composition of diets on chemical components of red sea bream broodstock and eggs produced. Bull. Jap. Soc. Sci. Fish., 50: 503-515. https://doi.org/10.2331/suisan.50.503
  48. Whyte, J.N.C. 1987. Biochemical composition and energy content six species of phytoplankton used in mariculture of bivalves. Aquaculture, 60: 231-241. https://doi.org/10.1016/0044-8486(87)90290-0
  49. Whyte, J.N.C., N.N. Bourne and N.G. Ginthe. 1990. Biochemical and energy changes during embryo genesis in th rock scallop, Crassadoma gigantea (Gray). Aquaculture, 86: 25-40. https://doi.org/10.1016/0044-8486(90)90219-D
  50. Wullur, S., Y. Sakakura and A. Hagiwara. 2011. Application of the minute monogonont rotifer Proales similis de Beauchamp in larval rearing of seven-band grouper Epinephelus septemfasciatus. Aquaculture, 315: 355-360. https://doi.org/10.1016/j.aquaculture.2011.02.025
  51. Zhn, P., C.C. Parrish and J.A. Brown. 2003. Lipid and amino acid metabolism during early development of Atlantic halibut (Hippoglossus hippoglossus). Aquacult. Int., 11: 43-52. https://doi.org/10.1023/A:1024128200224