DOI QR코드

DOI QR Code

Epoxylite Influence on Field Electron Emission Properties of Tungsten and Carbon Fiber Tips

  • Received : 2016.07.20
  • Accepted : 2016.11.18
  • Published : 2016.12.30

Abstract

This investigation deals with the process of field electron emission from composite microemitters. Tested emitters consisted of a tungsten or carbon-fiber core, coated with a dielectric material. Two coating materials were used: (1) Clark Electromedical Instruments Epoxylite resin and (2) Epidian 6 Epoxy resin (based on bisphenol A). Various properties of these emitters were measured, including the current-voltage characteristics, which are presented as Fowler-Nordheim plots, and the corresponding electron emission images. A field electron microscope with a tip (cathode) to screen (anode) distance of 10 mm was used to electrically characterize the emitters. Measurements were carried out under ultra-high vacuum conditions with a base pressure of $10^{-6}$ Pascal ($10^{-8}$ mbar).

Keywords

References

  1. Alnawasreh S, Mousa M S, and Al-Rabadi A N (2015) Investigating the effects of sample conditioning on nano-apex carbon fiber tips for efficient field electron emission. Jo. J. Phys. 2, 95-101.
  2. Al-Qudah A M, Mousa M S, and Fischer A (2015) Effect of insulating layer on the field electron emission performance of nano-apex metallic emitters. IOP Conf. Ser.: Mater. Sci. Eng. 92, 012021.
  3. Bajic S, Mousa M S, and Latham R V (1989) Factors influencing the stability of cold-cathodes formed by coating a planar electrode with a metal-insulator composite. J. Phys. (Paris) 50, C8 79-84.
  4. Forbes R G (2012) Extraction of emission parameters for large-area field emitters, using a technically complete Fowler-Nordheim-type equation. Nanotechnology 23, 095706. https://doi.org/10.1088/0957-4484/23/9/095706
  5. Forbes R G, Deane J H B, Fischer A, and Mousa M S (2015) Fowler-Nordheim plot analysis: a progress report. Jo. J. Phys. 8, 125-147.
  6. Latham R V and Mousa M S (1986) Hot electron emission from composite metal-insulator micropoint cathodes. J. Phys. D: Appl. Phys. 19, 699-713. https://doi.org/10.1088/0022-3727/19/4/021
  7. Lee H S, Lee J Y, and Yeo J S (2015) Transmission electron microscopy sample preparation of Ge2Sb2Te5 nanowire using electron beam. Appl. Microsc. 45, 199-202. https://doi.org/10.9729/AM.2015.45.4.199
  8. Lilienfeld J R (1922) The auto electronic discharge and its application to the construction of a New form of X-ray tube. Am. J. Roentgenol. 9, 172-179.
  9. Madanat M A, Mousa M S, Al-Rabadi A N, and Fischer A (2015) Electronmicroscopy-based performance evaluation of various tungsten fieldemitter tips apex radii. Jo. J. Phys. 8, 79-85.
  10. Moran Meza J A, Lubin C, Thoyer F, Villegas Rosales L A, Guitarra Espinoza A A, Martin F, and County J (2015) Fabrication of ultra-sharp tips from carbon fiber for scanning tunneling microscopy investigations of epitaxial graphene on 6H-SiC(0001) surface. Carbon 86, 363-370. https://doi.org/10.1016/j.carbon.2015.01.050
  11. Mousa M S (1987) Study of field induced hot-electron emission using the composite microemitters with varying dielectric layer thickness. J. Phys. (Paris) 48, C6 115-120. https://doi.org/10.1051/jphys:01987004801011500
  12. Mousa M S (1988) Effect of Lacomit films on cold-cathode hot-electron emission. J. Phys. (Paris) 49, C6 237-242. https://doi.org/10.1051/jphys:01988004902023700
  13. Mousa M S (1990) A new perspective on the hot-electron emission from metal-insulator microstructures. Surf. Sci. 231, 149-159. https://doi.org/10.1016/0039-6028(90)90707-F
  14. Mousa M S (1992) Field electron emission studies on zinc oxide coated tungsten micro emitters. Surf. Sci. 266, 110-120. https://doi.org/10.1016/0039-6028(92)91006-W
  15. Mousa M S (1994) Investigations of in-situ carbon coating on field emitter arrays. Vacuum 45, 241-244. https://doi.org/10.1016/0042-207X(94)90180-5
  16. Mousa M S (2007) Influence of a dielectric coating on electron emission from micropoint electron sources. Surf. Interface Anal. 39, 102-110. https://doi.org/10.1002/sia.2470
  17. Mousa M S, Alnawasreh S, Madanat M A, and Al-Rabadi A N (2015) Investigating of the field emission performance on nano-apex carbon fiber and tungsten tips. IOP Conf. Ser.: Mater. Sci. Eng. 92, 012022.
  18. Mousa M S and Al Share M (1999) Study of the MgO-coated W emitters by field emission microscopy. Ultramicroscopy 79, 195-202. https://doi.org/10.1016/S0304-3991(99)00096-0
  19. Mousa M S, Brugat M, Sheshin E P, and Hagmann M J (2001) Prototypes using metal, carbon fiber and composite field emission sources modulated by a laser beam. Ultramicroscopy 89, 129-135. https://doi.org/10.1016/S0304-3991(01)00121-8
  20. Mousa M S, Fischer A, and Mussa K O (2012), Metallic and composite micropoint cathodes: aging effect and electronic and spatial characteristics. Jo. J. Phys. 1, 21-26.
  21. Mousa M S and Kelly T F (2003) Stabilization of carbon-fiber cold fieldemission cathodes with a dielectric coating. Ultramicroscopy 95, 125-130. https://doi.org/10.1016/S0304-3991(02)00307-8
  22. Murphy E L and Good R H (1956) Thermionic emission, field emission and the transition region. Phys. Rev. 102, 1464-1473. https://doi.org/10.1103/PhysRev.102.1464
  23. Mussa K O, Fischer A, and Mousa M S (2012) Characterizing a new composite material: effect of NaOH coating of variable thickness on the properties of a tungsten microemitter. Jo. J. Phys. 5, 27-31.
  24. Winkler J H (1744) Gedanken von den Eigenschaften, Wirkungen und Ursachen der Electrizitat nebst Beschreibung zweier electrischer Maschinen (Verlag B. Ch. Breitkopf, Leipzig).