DOI QR코드

DOI QR Code

Fabrication and Performance of Microcolumnar CsI:Tl onto Silicon Photomultiplier

실리콘광증배관 기반의 미세기둥 구조 CsI:Tl 제작 및 평가

  • Received : 2016.09.23
  • Accepted : 2016.11.29
  • Published : 2016.12.31

Abstract

This study conducted the gamma ray spectroscopic analysis of the microcolumnar CsI:Tl deposited onto the SiPMs using thermal evaporation deposition. The SEM measured thickness of microcolumnar CsI:Tl and of its individual columns. From the SEM observation, the measured thickness of CsI:Tl were $450{\mu}m$ and $600{\mu}m$. The gamma ray spectroscopic properties of microcolumnar CsI:Tl, $450{\mu}m$ and $600{\mu}m$ thick deposited onto the SiPMs were analyzed using standard gamma ray sources $^{133}Ba$ and $^{137}Cs$. The spectroscopic analysis of microcolumnar CsI:Tl deposited onto the SiPMs included the measurements of response linearity over the $^{137}Cs$ gamma ray intensity; and gamma ray energy spectrum. Furthermore from the gamma ray spectrum measurement of $^{133}Ba$ and $^{137}Cs$, $450{\mu}m$ thick CsI:Tl showed good efficiency when measured with $^{133}Ba$ and $600{\mu}m$ thick CsI:Tl was highly efficient when measured with $^{137}Cs$.

본 연구에서는 SiPM에 열진공증착법을 이용하여 증착한 미세기둥 구조의 CsI:Tl의 감마선 분광특성연구를 진행하였다. SEM장비를 사용하여 미세기둥 구조의 CsI:Tl의 두께와 각각의 CsI:Tl 미세기둥의 두께를 측정하였다. SEM 관측 결과 CsI:Tl의 두께는 $450{\mu}m$, $600{\mu}m$이다. SiPM에 $450{\mu}m$, $600{\mu}m$ 두께로 증착한 미세기둥 구조의 CsI:Tl은 표준 감마선원인 $^{133}Ba$, $^{137}Cs$를 사용하여 감마선의 분광특성 평가를 진행하였다. SiPM에 증착한 미세기둥 구조 CsI:Tl의 분광특성 평가는 $^{137}Cs$ 감마선 세기에 따른 응답 선형성과, 감마선 에너지 스펙트럼을 측정하였다. SiPM에 증착한 두께 $450{\mu}m$$600{\mu}m$ CsI:Tl은 감마선 세기에 따라 선형성을 나타났다. 또한 $^{133}Ba$$^{137}Cs$의 감마선 에너지 스펙트럼 측정 결과 $450{\mu}m$ 두께의 CsI:Tl은 $^{133}Ba$에 대한 특성이 좋게 평가되었고, $600{\mu}m$ 두께의 CsI:Tl은 $^{137}Cs$에서 우수한 특성을 확인할 수 있었다.

Keywords

References

  1. H. Sabet et al., "High-Performance and Cost-Effective Detector Using Microcolumnar CsI:Tl and SiPM," IEEE Trans. Nucl. Sci, vol. 59, no. 5, pp. 1841-1849, 2012. https://doi.org/10.1109/TNS.2012.2202248
  2. A. Osovizky et al., "SENTIRAD-An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier," Nucl. Inst. and Meth. A, vol. 652, no. 1, pp. 41-44, 2011. https://doi.org/10.1016/j.nima.2011.01.027
  3. S. Miller, V. Gaysinskiy, I. Shestakova, and V. Nagarkar "Recent Advances in Columnar CsI(Tl) Scintillator Screens," Proceedings of SPIE (Penetrating Radiation Systems and Applications VII, 59230F), vol. 5923, 2005.
  4. H. Park and K. Joo, "Feasibility of a wireless gamma probe in radioguided surgery," Phys. Med. Biol, vol. 61, no. 12, pp. 311-321, 2016. https://doi.org/10.1088/0031-9155/61/12/N311
  5. H. Park and K. Joo, "Performance characteristics of a silicon photomultiplier based compact radiation detector for homeland Security applications," Nucl. Inst. and Meth. A, vol. 781, pp. 1-5, 2015. https://doi.org/10.1016/j.nima.2015.01.080
  6. J. Kim and K. Joo "Study on Scintillator Polishing Technology for Increasing the Detection Efficiency of Radiation Detectors Using Plastic Scintillators," j.inst.Korean.electr. electron.eng, vol. 18, no. 4, pp. 456-462, 2014.
  7. B. Chae et al., "Improvement of the sensitivity and spatial resolution of pixelated CsI:Tl scintillator with reflective coating," Nucl. Inst. and Meth. A, vol. 607, pp. 145-149, 2009. https://doi.org/10.1016/j.nima.2009.03.145
  8. K. Han et al., "Development of Fiber-optic Radiation Sensor Using LYSO Scintillator for Gamma-ray Spectroscopy," J. Sensor Sci. & Tech, vol. 21, no. 4 pp. 287-292, 2012. https://doi.org/10.5369/JSST.2012.21.4.287
  9. H. Park and K. Joo, "Development of a Wireless Gamma-ray probe for Diagnosing and Evaluation of its Effectiveness," J. Electron. & Infor. Eng, vol. 52, no. 2, pp. 355-363, 2015.
  10. J. Kim and K. Joo, "Fabrication of Fiber-optics Detector for Measuring Radioactive Waste," j.inst.Korean.electr.electron.eng, vol. 19, no. 3 pp. 282-287, 2015.