DOI QR코드

DOI QR Code

Drug Target Identification and Elucidation of Natural Inhibitors for Bordetella petrii: An In Silico Study

  • Rath, Surya Narayan (BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology) ;
  • Ray, Manisha (BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology) ;
  • Pattnaik, Animesh (BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology) ;
  • Pradhan, Sukanta Kumar (BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology)
  • 투고 : 2016.11.03
  • 심사 : 2016.11.24
  • 발행 : 2016.12.31

초록

Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound against the pathogen has a great aid and value. In this study, bioinformatics tools and technology have been applied to suggest a potential drug target by screening the proteome information of B. petrii DSM 12804 (accession No. PRJNA28135) from genome database of National Centre for Biotechnology information. In this regards, the inhibitory effect of nine natural compounds like ajoene (Allium sativum), allicin (A. sativum), cinnamaldehyde (Cinnamomum cassia), curcumin (Curcuma longa), gallotannin (active component of green tea and red wine), isoorientin (Anthopterus wardii), isovitexin (A. wardii), neral (Melissa officinalis), and vitexin (A. wardii) have been acknowledged with anti-bacterial properties and hence tested against identified drug target of B. petrii by implicating computational approach. The in silico studies revealed the hypothesis that lpxD could be a potential drug target and with recommendation of a strong inhibitory effect of selected natural compounds against infection caused due to B. petrii, would be further validated through in vitro experiments.

키워드

참고문헌

  1. von Wintzingerode F, Schattke A, Siddiqui RA, Rosick U, Gobel UB, Gross R. Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. Int J Syst Evol Microbiol 2001;51(Pt 4):1257-1265. https://doi.org/10.1099/00207713-51-4-1257
  2. Wang F, Grundmann S, Schmid M, Dorfler U, Roherer S, Charles Munch J, et al. Isolation and characterization of 1,2,4-trichlorobenzene mineralizing Bordetella sp. and its bioremediation potential in soil. Chemosphere 2007;67:896-902. https://doi.org/10.1016/j.chemosphere.2006.11.019
  3. Bianchi F, Careri M, Mustat L, Malcevschi A, Musci M. Bioremediation of toluene and naphthalene: development and validation of a GC-FID method for their monitoring. Ann Chim 2005;95:515-524. https://doi.org/10.1002/adic.200590061
  4. Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S, McCarthy P, et al. A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 2005;28:242-264. https://doi.org/10.1016/j.syapm.2004.12.002
  5. Chowdhury SP, Schmid M, Hartmann A, Tripathi AK. Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar Desert, India. Microb Ecol 2007;54:82-90. https://doi.org/10.1007/s00248-006-9174-1
  6. Gross R, Guzman CA, Sebaihia M, dos Santos VA, Pieper DH, Koebnik R, et al. The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics 2008;9:449. https://doi.org/10.1186/1471-2164-9-449
  7. Nogi M, Bankowski MJ, Pien FD. Septic arthritis and osteomyelitis due to Bordetella petrii. J Clin Microbiol 2015;53: 1024-1027. https://doi.org/10.1128/JCM.02794-14
  8. Fry NK, Duncan J, Malnick H, Warner M, Smith AJ, Jackson MS, et al. Bordetella petrii clinical isolate. Emerg Infect Dis 2005;11:1131-1133. https://doi.org/10.3201/eid1107.050046
  9. Stark D, Riley LA, Harkness J, Marriott D. Bordetella petrii from a clinical sample in Australia: isolation and molecular identification. J Med Microbiol 2007;56(Pt 3):435-437. https://doi.org/10.1099/jmm.0.46976-0
  10. Le Coustumier A, Njamkepo E, Cattoir V, Guillot S, Guiso N. Bordetella petrii infection with long-lasting persistence in human. Emerg Infect Dis 2011;17:612-618. https://doi.org/10.3201/eid1704.101480
  11. Spilker T, Liwienski AA, LiPuma JJ. Identification of Bordetella spp. in respiratory specimens from individuals with cystic fibrosis. Clin Microbiol Infect 2008;14:504-506. https://doi.org/10.1111/j.1469-0691.2008.01968.x
  12. Moissenet D, Bingen E, Arlet G, Vu-Thien H. Use of 16S rRNA gene sequencing for identification of “Pseudomonas-like” isolates from sputum of patients with cystic fibrosis. Pathol Biol (Paris) 2005;53:500-502. https://doi.org/10.1016/j.patbio.2005.06.004
  13. Gomez-Cerezo J, Suarez I, Rios JJ, Pena P, Garcia de Miguel MJ, de Jose M, et al. Achromobacter xylosoxidans bacteremia: a 10-year analysis of 54 cases. Eur J Clin Microbiol Infect Dis 2003;22:360-363. https://doi.org/10.1007/s10096-003-0925-3
  14. Conway SP, Brownlee KG, Denton M, Peckham DG. Antibiotic treatment of multidrug-resistant organisms in cystic fibrosis. Am J Respir Med 2003;2:321-332. https://doi.org/10.1007/BF03256660
  15. Buetow L, Smith TK, Dawson A, Fyffe S, Hunter WN. Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Proc Natl Acad Sci U S A 2007;104:4321-4326. https://doi.org/10.1073/pnas.0606356104
  16. Alshalchi SA, Anderson GG. Expression of the lipopolysaccharide biosynthesis gene lpxD affects biofilm formation of Pseudomonas aeruginosa. Arch Microbiol 2015;197:135-145. https://doi.org/10.1007/s00203-014-1030-y
  17. Ravindranath BS, Krishnamurthy V, Krishna V, Vasudevanayaka KB. In silico analyses of metabolic pathway and protein interaction network for identification of next gen therapeutic targets in Chlamydophila pneumoniae. Bioinformation 2013;9: 605-609. https://doi.org/10.6026/97320630009605
  18. LeFrock J, Mader J, Smith B, Carr B. Bone and joint infections caused by gram-positive bacteria: treatment with cefotaxime. Infection 1985;13 Suppl 1:S50-S55. https://doi.org/10.1007/BF01644219
  19. Hu J, Wang X, Ai T, Xie X, Liu X, Liu H, et al. Multicenter prospective epidemiological studies on Haemophilus influenzae infection among hospitalized children with lower respiratory tract infections. Zhonghua Er Ke Za Zhi 2016;54:119-125.
  20. Moghaddam SJ, Barta P, Mirabolfathinejad SG, Ammar-Aouchiche Z, Garza NT, Vo TT, et al. Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Carcinogenesis 2009;30:1949-1956. https://doi.org/10.1093/carcin/bgp229
  21. Namkung W, Thiagarajah JR, Phuan PW, Verkman AS. Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J 2010;24:4178-4186. https://doi.org/10.1096/fj.10-160648
  22. Flores G, Dastmalchi K, Dabo AJ, Whalen K, Pedraza-Penalosa P, Foronjy RF, et al. Antioxidants of therapeutic relevance in COPD from the neotropical blueberry Anthopterus wardii. Food Chem 2012;131:119-125. https://doi.org/10.1016/j.foodchem.2011.08.044
  23. Niu C, Afre S, Gilbert ES. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 2006;43:489-494. https://doi.org/10.1111/j.1472-765X.2006.02001.x
  24. Niu C, Gilbert ES. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 2004;70:6951-6956. https://doi.org/10.1128/AEM.70.12.6951-6956.2004
  25. Jalal Z, El Atki Y, Lyoussi B, Abdellaoui A. Phytochemistry of the essential oil of Melissa officinalis L. growing wild in Morocco: preventive approach against nosocomial infections. Asian Pac J Trop Biomed 2015;5:458-461.
  26. Damte D, Suh JW, Lee SJ, Yohannes SB, Hossain MA, Park SC. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae. Genomics 2013;102: 47-56. https://doi.org/10.1016/j.ygeno.2013.04.011
  27. Haag NL, Velk KK, Wu C. Potential antibacterial targets in bacterial central metabolism. Int J Adv Life Sci 2012;4:21-32.
  28. Sakharkar KR, Sakharkar MK, Chow VT. A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In Silico Biol 2004;4:355-360.
  29. Vetrivel U, Subramanian G, Dorairaj S. A novel in silico approach to identify potential therapeutic targets in human bacterial pathogens. Hugo J 2011;5:25-34. https://doi.org/10.1007/s11568-011-9152-7
  30. Pandey M, Tiwari A, Maurya S, Singh D, Srivastava P. Choke point analysis with subtractive proteomic approach for insilico identification of potential drug targets in Shigella dysenteriae. Int J Comput Appl 2015;109:29-34.
  31. Shanmugham B, Pan A. Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: a novel hierarchical in silico approach. PLoS One 2013;8:e59126. https://doi.org/10.1371/journal.pone.0059126
  32. Barh D, Kumar A. In silico identification of candidate drug and vaccine targets from various pathways in Neisseria gonorrhoeae. In Silico Biol 2009;9:225-231.
  33. Anishetty S, Pulimi M, Pennathur G. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem 2005;29:368-378. https://doi.org/10.1016/j.compbiolchem.2005.07.001
  34. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011;39:D561-D568. https://doi.org/10.1093/nar/gkq973
  35. Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009;4: 363-371. https://doi.org/10.1038/nprot.2009.2
  36. Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 2011;101:2525-2534. https://doi.org/10.1016/j.bpj.2011.10.024
  37. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, et al. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 2003;50:437-450. https://doi.org/10.1002/prot.10286
  38. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007;35:W407-W410. https://doi.org/10.1093/nar/gkm290
  39. Wallner B, Elofsson A. Can correct protein models be identified? Protein Sci 2003;12:1073-1086. https://doi.org/10.1110/ps.0236803
  40. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 1993;2: 1511-1519. https://doi.org/10.1002/pro.5560020916
  41. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785-2791. https://doi.org/10.1002/jcc.21256
  42. Kumar S, Jena L, Galande S, Daf S, Mohod K, Varma AK. Elucidating molecular interactions of natural inhibitors with HPV-16 E6 oncoprotein through docking analysis. Genomics Inform 2014;12:64-70. https://doi.org/10.5808/GI.2014.12.2.64
  43. Jagadeb M, Konkimalla VB, Rath SN, Das RP. Elucidation of the inhibitory effect of phytochemicals with Kir6.2 wild-type and mutant models associated in type-1 diabetes through molecular docking approach. Genomics Inform 2014;12:283-288. https://doi.org/10.5808/GI.2014.12.4.283
  44. Wang X, Quinn PJ. Lipopolysaccharide: biosynthetic pathway and structure modification. Prog Lipid Res 2010;49:97-107. https://doi.org/10.1016/j.plipres.2009.06.002
  45. Rosenfeld Y, Shai Y. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta 2006; 1758:1513-1522. https://doi.org/10.1016/j.bbamem.2006.05.017
  46. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016;4:44(D1):D457-D462.
  47. Barb AW, Zhou P. Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr Pharm Biotechnol 2008;9:9-15. https://doi.org/10.2174/138920108783497668
  48. Badger J, Chie-Leon B, Logan C, Sridhar V, Sankaran B, Zwart PH, et al. Structure determination of LpxD from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013;69(Pt 1):6-9. https://doi.org/10.1107/S1744309112048890