References
- 곽주철, 류희주 (2008). 평면도형에 대한 교사의 PCK와 수업 실제의 비교분석, 학교수학 10(3), 423-441.(Kwak, J. C. & Ryu, H. S. (2008). Comparative analysis of the PCK of teachers on plane figure and their educational practice, School mathematics 10(3), 423-441.)
- 교육과학기술부 (2011). 수학과 교육과정. 교육과학기술부고시 제 2011-361호 [별책 8]. 서울: 교육과학기술부.(Ministry of Education, Science and Technology (2011). Mathematics curriculum. MEST announcement 2011-361 [Seperate Volume 8]. Seoul: MEST)
- 김영옥 (2009). 대학 신입생들의 명제에 대한 이해, 학교수학 11(2), 261-280.(Kim, Y. O. (2009). First-year undergraduate students' understanding about statements. School mathematics 11(2), 261-280.)
- 김원경 외. (2014). 고등학교 수학 II. 서울: 비상교육.(Kim, W. K. et al. (2014). High school mathematics II. Seoul: Visang.)
- 김희정, 박은진 (2004). 비판적 사고를 위한 논리. 서울: 아카넷.(Kim, H. J. & Park, E. J. (2004). Logic for critical thinking. Seoul: Acanet.)
- 노영순 (2010). 알기 쉬운 집합론. 서울: 교우사.(Noh, Y. S. (2010). Set theory. Seoul: Kyowoosa.)
- 박경미 (2009). 수학의 교수학적 내용 지식(PCK)에 대한 연구의 메타적 검토, 수학교육 48(1), 93-105.(Park, K. M. (2009). A meta review of the researches on PCK in mathematics. The mathematical education 48(1), 93-105.)
- 박선화, 박은아, 서민희 (2013). 고등학교 성취평가제 운영의 실제-수학-. 서울: 한국교육과정평가원.(Park, S. H., Park, E. A., & Suh, M. H. (2013). A study on developing operational plans for implementing achievement standards-based assessment in high schools: Mathematics. Seoul: Korea Institute for Curriculum and Evaluation.)
- 박지현 (2008). 학습자의 오개념과 오류에 대한 교사들의 Pedagogical Content Knowledge 사례 연구 -중학교 1학년 함수 영역을 중심으로-. 석사학위 논문, 이화여자대학교.(Park, J. H. (2008). A case study on pedagogical content knowledge about students' misconceptions and errors: Focused on the 7th grade function part. Unpublished a master's thesis, Ewha Womans University.)
- 방정숙, 정유경 (2013). 수학 수업에서 드러나는 교사 지식을 분석하기 위한 틀로서의 '교사 지식의 사중주(Knowledge Quartet)', 수학교육 52(4), 567-586.(Pang, J. S. & Jung, Y. K. (2013). 'The knowledge quartet' as a framework of analyzing teacher knowledge in mathematics instruction, The mathematical education 52(4), 567-586.)
- 송형수 (2008). 기초 집합론. 서울: 교우사.(Song, H. S. (2008). Basic set theory. Seoul: Kyowoosa.)
- 안선영, 방정숙 (2006). 평면도형의 넓이에 대한 교사의 교수학적 내용 지식과 수업 실제 분석. 수학교육학연구 16(1), 25-41.(An, S. Y. & Pang, J. S. (2008). An analysis of the relationship between teachers' pedagogical content knowledge and teaching practice: Focusing on the area of plane figure. Journal of educational research in mathematics 16(1), 25-41.)
- 우정호 (2008). 학교수학의 교육적 기초. 서울: 서울대학교출판부.(Woo, J. H. (2008). Educational basis of school mathematics. Seoul: SNU press.)
- 이경은(2007). 수업 실제에서 나타나는 교사의 Pedagogical Content Knowledge에 관한 사례연구-중학교 도형의 성질을 중심으로-. 석사학위논문, 서울대학교.(Lee, K. E. (2007). Pedagogical content knowledge represented in teaching practice: Focusing on the case of mathematics teachers' teaching 'property of figure'. Unpublished a master's thesis, Seoul National University.)
- 이병무 (2009). 집합론의 이해. 서울: 경문사.(Lee, B. M. (2009). Set theory. Seoul: Kyungmoonsa.)
- 이준열 외 (2014). 고등학교 수학 II. 서울: 천재교육.(Lee, J. Y. et al. (2014). High school mathematics II. Seoul: Chunjae.)
- 조성민(2006). 교육과정 실행의 관점에서 본 수학교사 지식과 수업의 관련성 연구-고등학교 함수 내용을 중심으로-. 박사학위논문, 이화여자대학교.(Cho, S. M. (2006). Research on the relationship between teacher's knowledge and classroom practice evaluated from curriculum implementation perspective: Focused on knowledge of function in mathematics. Unpublished a doctoral thesis, Ewha Womans University.)
- Akkoc H., Yesildere, S., & Ozmantar, F. (2007). Prospective mathematics teachers' pedagogical content knowledge of definite integral: the problem of limit process. Proceedings of the British society for research into learning mathematics 27(3), 7-12. Great Britain; British Society for Research into Learning Mathematics.
- Antonini, S. (2006). Indirect proof : An interpreting model. In J. Novotana, H. Moraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings of the 30th conference of the international group for the psychology of mathematics education (pp. 190-197). Prague, Czech Republic.
- Antonini, S. & Mariotti, M. A. (2007). Indirect proof: An interpreting model. Proceedings of the 5th congress of the European society for research in mathematics education 2, 541-550.
- Ball, D., Hill, H., & Bass, H. (2005). Who knows mathematics well enough to teach third grade and how can we decide? American educator, 29(1), 14-46.
- Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching. Journal of teacher education 59(5), 389-407. https://doi.org/10.1177/0022487108324554
- Chick, H., Baker, M., Pham, T., & Cheng, H. (2006). Aspects of teachers' pedagogical content knowledge for decimals. In J. Novotana, H. Moraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings of the 30th conference of the international group for the psychology of mathematics education (Volume 2, pp. 297-304). Prague, Czech Republic.
- Durand-Guerrier, V. (2003). Which notion of implication is the right one? From logical considerations to a didactic perspective. Educational studies in mathematics 53, 5-34. https://doi.org/10.1023/A:1024661004375
- Fennema, E. & Frnake, L. M. (1992). Teachers' knowledge and its impact. In D. A. Grouws (Eds.), Handbook of research on mathematics teaching and learning (pp. 147-164). NY: Macmillan.
- Freudenthal, H. (1974). Mathematics as an educational task. Dordrecht: D. reidel publishing company.
- Fulks, W. (2014). Advanced calculus: An introduction to analysis. USA: Wiley.
- Greer, B., & Mukhopadhyay, S. (2005). Teaching and learning the mathematization of uncertainty: Historical, cultural, social and political contexts. In G. A. Jones (Eds.), Exploring probability in school: Challenges for teaching and learning (pp. 297-324). USA: Springer.
- Hiebert, J. (2013). The constantly underestimated challenge of improving mathematics instruction. In K. R. Leatham (Eds.) Vital direction for mathematics education research (pp. 45-56). New York: Springer.
- Jacquette, D. (2008). Mathematical proof and discovery reductio ad absurdum. Informal logic 28(3), 242-261. https://doi.org/10.22329/il.v28i3.596
- Levenson, E. (2012). Teachers' knowledge of the nature of definitions: The case of the zero exponent. Journal of mathematical behavior 31, 209-219. https://doi.org/10.1016/j.jmathb.2011.12.006
- Lin & Lin (2008). 집합론. (이흥천 역). 서울: 경문사. (원저 1999년 출판).
- Marks, R. (1990). Pedagogical content knowledge: From a mathematical case to a modified conception. Journal of teacher education 41(3), 3-11. https://doi.org/10.1177/002248719004100302
- Misailidou, C. (2008). Assessing and developing pedagogical content knowledge: A new approach. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings the 32nd conference of the international. group for the psychology of mathematics education (Volume 3, pp. 391-398). Morelia, Mexico.
- Petrou, M. & Goulding, M. (2011). Conceptualising teachers' mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 9-25). New York: Springer.
- Polya, G. (2005). 어떻게 문제를 풀 것인가? (우정호 역), 서울: 교우사. (원저 1956년 출판).
- Rowland, T. & Ruthven, K. (2011). Introduction: Mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 1-8). New York: Springer.
- Rubenstein, R. N., Craine, T. V., & Butts, T. R. (2000). Integrated mathematics 3. Boston: McDougal Littell.
- Rutheven, K. (2011). Conceptualising mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 83-96). New York: Springer.
- Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher 15, 4-14.
- Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard educational review 57, 1-22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
- Stein, M. K., Pemillard, J., & Smith, M. S. (2007). How curriculum influences student learning. In F. K. Lester (Eds.), Second handbook of research on mathematics teaching and learning (pp. 319-369). NC: Information Age Publishing.
- Steinbring, H. (2011). Changed views on mathematical knowledge in the course of didactical theory development: Independent corpus of scientific knowledge or result of social constructions? In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 43-64). New York: Springer.
- Watson, A. & Barton, B. (2011). Teaching mathematics as the contextual application of mathematical modes of enquiry. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 65-82). New York: Springer.
- Wu, Y. J., Lin, F., & Lee, Y. (2003). Students' understanding of proof by contradiction. Proceedings of the 2003 joint meeting of PME and PMENA (Volume 2, pp. 443-449). Honolulu, HI.
Cited by
- 국내 수학 교사교육 연구의 동향 분석: 2000년 이후 게재된 한국수학교육학회의 학술지 논문을 중심으로 vol.58, pp.1, 2016, https://doi.org/10.7468/mathedu.2019.58.1.121
- 수업을 위한 수학적 지식과 수업의 수학적 질 사이의 관계: 고등학교를 중심으로 vol.59, pp.3, 2016, https://doi.org/10.7468/mathedu.2020.59.3.237
- 예비수학교사의 MKT 함양을 위한 프로그램 개발 및 효과에 관한 연구 vol.34, pp.3, 2016, https://doi.org/10.7468/jksmee.2020.34.3.257