DOI QR코드

DOI QR Code

Evaluation of TiO2 Photocatalytic Activity with Addition of Carbon Nanotube

탄소나노튜브(CNT)의 첨가에 따른 TiO2의 광촉매 특성 변화 연구

  • Yeo, In-Chul (Department of Mechanical Engineering, Incheon National University) ;
  • Kang, In-Cheol (Sports & Materials Technology Center, Incheon Economy Industry Information Technopark)
  • 여인철 (인천대학교 기계공학과) ;
  • 강인철 ((재)인천경제산업정보테크노파크 스포츠융합센터)
  • Received : 2016.11.08
  • Accepted : 2016.12.19
  • Published : 2016.12.28

Abstract

A $TiO_2$/CNT nanohybrid photocatalyst is synthesized via sol-gel route, with titanium (IV) isopropoxide and multi-walled carbon nanotubes (MWCNTs) as the starting materials. The microstructures and phase constitution of the nanohybrid $TiO_2$/CNT (0.005wt%) samples after calcination at $450^{\circ}C$, $550^{\circ}C$ and $650^{\circ}C$ in air are compared with those of pure $TiO_2$ using field-emission scanning electron microscopy and X-ray diffraction, respectively. In addition, the photocatalytic activity of the nanohybrid is compared with that of pure $TiO_2$ with regard to the degradation of methyl orange under visible light irradiation. The $TiO_2$/CNT composite exhibits a fast grain growth and phase transformation during calcination. The nanocomposite shows enhanced photocatalytic activity under visible light irradiation in comparison to pure $TiO_2$ owing to not only better adsorption capability of CNT but also effective electron transfer between $TiO_2$ and CNTs. However, the high calcination temperature of $650^{\circ}C$, regardless of addition of CNT, causes a decrease in photocatalytic activity because of grain growth and phase transformation to rutile. These results such as fast phase transformation to rutile and effective electron transfer are related to carbon doping into $TiO_2$.

Keywords

References

  1. I. C. Kang, Q. Zhang, J. Kano, S. Yin, T. Sato and F. Saito: J. Photochem. Photobiol. A Chem., 189 (2007) 232. https://doi.org/10.1016/j.jphotochem.2007.02.003
  2. I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Appl. Catal B, 80 (2008) 81. https://doi.org/10.1016/j.apcatb.2007.11.005
  3. I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Environ. Sci. Technol., 42 (2008) 3622. https://doi.org/10.1021/es702932m
  4. T. Ohno, K. Tokieda, S. Higashida and M. Matsumura: Appl. Catal. A Gen., 244 (2003) 383. https://doi.org/10.1016/S0926-860X(02)00610-5
  5. S. H. Lee, S. Pumprueg, B. Moudgil and W. Sigmund: Colloid Surf. B Biointerfaces, 40 (2005) 93. https://doi.org/10.1016/j.colsurfb.2004.05.005
  6. M. Chen, F. Zhang and W. Oh: New Carbon Mater., 24 (2009) 159. https://doi.org/10.1016/S1872-5805(08)60045-1
  7. S. J. Kim, J. S. Im, P. H. Kang, T. Kim and Y. S. Lee: Carbon Lett., 9 (2008) 294. https://doi.org/10.5714/CL.2008.9.4.294
  8. K. Woan, G. Pyrgiotakis and W. Sigmund: Adv. Mater., 21 (2009) 2233. https://doi.org/10.1002/adma.200802738
  9. W. C. Oh and M. L. Chen: Bull. Korean Chem. Soc., 29 (2008) 159. https://doi.org/10.5012/bkcs.2008.29.1.159
  10. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann: Chem. Rev., 95 (1995) 69. https://doi.org/10.1021/cr00033a004
  11. W. Wang, P. Serp, P. Kalck and J. L. Faria: J. Mol. Catal. A Chem., 235 (2005) 194. https://doi.org/10.1016/j.molcata.2005.02.027
  12. G. Pyrgiotakis, S. H. Lee and W. Sigmund: Advanced Photocatalysis with Anatase Nano-Coated Multi-Walled Carbon Nanotubes, MRS Spring Meeting, San Francisco, CA (2005).
  13. D. Li, and H. Haneda: J. Photochem. Photobiol., A Chem. 160 (2003) 203. https://doi.org/10.1016/S1010-6030(03)00212-0
  14. N. Takeda, N. Iwata, T. Torimoto and H. Yoneyama: J. Catal., 177 (1998) 240. https://doi.org/10.1006/jcat.1998.2117
  15. B. Tryba, A. W. Morawski and M. Inagaki: Appl. Catal. B Environ., 41 (2003) 427. https://doi.org/10.1016/S0926-3373(02)00173-X
  16. P. Scherrer: Mathematisch-Physikalische Klasse, 2 (1918) 98.
  17. S. H. Huang, C. C. Wang, S. Y. Liao, J. Y. Gan and T. P. Perng: Thin Solid Films, 616 (2016) 151. https://doi.org/10.1016/j.tsf.2016.08.003
  18. J. K. Han, S. M. Choi and G. H. Lee: Mater. Lett., 61 (2007) 3798. https://doi.org/10.1016/j.matlet.2006.12.075
  19. K. Palanivelu, J. S. Im and Y. S. Lee: Carbon Sci., 8 (2007) 214.
  20. B. T. Lee, J. K. Han, A. K. Gain. K. H. Lee and F. Saito: Mater. Lett., 60 (2006) 2101. https://doi.org/10.1016/j.matlet.2005.12.102
  21. K. C. Nguyen, M. P. Ngoc and M. V. Nguyen: Mater. Lett., 165 (2016) 247. https://doi.org/10.1016/j.matlet.2015.12.004
  22. Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao and C. Xie: ACS Catal., 3 (2013) 1477. https://doi.org/10.1021/cs400080w
  23. T. Ohno, T. Tsubota, K. Nishijima and Z. Miyamoto: Chem. Lett., 33 (2004) 750. https://doi.org/10.1246/cl.2004.750