DOI QR코드

DOI QR Code

산소환원반응 촉매용 질소 도핑된 탄소나노섬유의 제조

Synthesis of Nitrogen-doped Carbon Nanofibers for Oxygen Reduction Reaction

  • 안건형 (서울과학기술대학교 의공학 바이오소재 융합 협동과정 신소재공학 프로그램) ;
  • 이은환 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 의공학 바이오소재 융합 협동과정 신소재공학 프로그램)
  • An, Geon-Hyoung (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Lee, Eun-Hwan (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
  • 투고 : 2016.10.11
  • 심사 : 2016.11.14
  • 발행 : 2016.12.28

초록

N-doped carbon nanofibers as catalysts for oxygen-reduction reactions are synthesized using electrospinning and carbonization. Their morphologies, structures, chemical bonding states, and electrochemical performance are characterized. The optimized N-doped carbon nanofibers exhibit graphitization of carbon nanofibers and an increased nitrogen doping as well as a uniform network structure. In particular, the optimized N-doped carbon nanofibers show outstanding catalytic activity for oxygen-reduction reactions, such as a half-wave potential ($E_{1/2}$) of 0.43 V, kinetic limiting current density of $6.2mAcm^{-2}$, electron reduction pathways (n = 3.1), and excellent long-term stability after 2000 cycles, resulting in a lower $E_{1/2}$ potential degradation of 13 mV. The improvement in the electrochemical performance results from the synergistic effect of the graphitization of carbon nanofibers and the increased amount of nitrogen doping.

키워드

참고문헌

  1. M. Lefevre, E. Proietti, F. Jaouen and J.-P. Dodelet: Science, 324 (2009) 71. https://doi.org/10.1126/science.1170051
  2. G. H. An and H. J. Ahn: Kor. J. Mater. Res., 22 (2012) 421. https://doi.org/10.3740/MRSK.2012.22.8.421
  3. J. Snyder, T. Fujita, M. W. Chen and J. Erlebacher: Nat. Mater., 9 (2010) 904. https://doi.org/10.1038/nmat2878
  4. M. K. Jeon, C. H. Lee, G. I. Park and K. H. Kang: J. Power Sources, 216 (2012) 400. https://doi.org/10.1016/j.jpowsour.2012.05.107
  5. K. Gong, F. Du, Z. Xia, M. Durstock and L. Dai: Science, 323 (2009) 760. https://doi.org/10.1126/science.1168049
  6. G. H. An and H.-J. Ahn: J. Electroanal. Chem., 707 (2013) 74. https://doi.org/10.1016/j.jelechem.2013.08.024
  7. G. H. An, E.-H. Lee and H.-J. Ahn: J. Alloys Compd., 682 (2016) 746. https://doi.org/10.1016/j.jallcom.2016.05.033
  8. B. Wang: J. Power Sources, 152 (2005) 1. https://doi.org/10.1016/j.jpowsour.2005.05.098
  9. H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, F. Luo, H. Song, Y. Zhong and B. Zhang: Sci. Rep., 3 (2013) 1765. https://doi.org/10.1038/srep01765
  10. Y. L. Liu, X. Y. Xu, P. C. Sun and T. H. Chen: Int. J. Hydrogen Energy, 40 (2015) 4531. https://doi.org/10.1016/j.ijhydene.2015.02.018
  11. G. H. An and H. J. Ahn: Carbon, 65 (2013) 87. https://doi.org/10.1016/j.carbon.2013.08.002
  12. G. H. An and H. J. Ahn: Ceram. Int., 38 (2012) 3197. https://doi.org/10.1016/j.ceramint.2011.12.024
  13. G. H. An, J. I. Sohn and H. J. Ahn: J. Mater. Chem. A Mater. Energy Sustain., 4 (2016) 2049. https://doi.org/10.1039/C5TA10067D
  14. G. H. An, B. R. Koo and H. J. Ahn: Phys. Chem. Chem. Phys., 18 (2016) 6587. https://doi.org/10.1039/C6CP00035E
  15. G. H. An and H. J. Ahn: Kor. J. Mater. Res., 23 (2013) 143. https://doi.org/10.3740/MRSK.2013.23.2.143
  16. D. Y. Sin, G. H. An and H. J. Ahn: J. Korean Powder Metall. Inst., 22 (2015) 350. https://doi.org/10.4150/KPMI.2015.22.5.350
  17. B. R. Koo, G. H. An and H. J. Ahn: J. Korean Powder Metall. Inst., 21 (2014) 108. https://doi.org/10.4150/KPMI.2014.21.2.108
  18. D. Y. Sin, G. H. An and H. J. Ahn: Kor. J. Mater. Res., 25 (2015) 113. https://doi.org/10.3740/MRSK.2015.25.3.113
  19. H. L. An, G. H. An and H. J. Ahn: Kor. J. Mater. Res., 26 (2016) 250. https://doi.org/10.3740/MRSK.2016.26.5.250