DOI QR코드

DOI QR Code

The Estimation of Annual Net Ecosystem Exchange of CO2 in an Apple Orchard Ecosystem of South Korea

국내 사과원 생태계에서 CO2의 연간 순생태 교환량 추정

  • Received : 2016.11.21
  • Accepted : 2016.12.22
  • Published : 2016.12.30

Abstract

Carbon dioxide ($CO_2$) gases concentration in atmosphere has been growing since preindustrial times. By sequestering a large amount of atmospheric carbon (C), terrestrial ecosystems are thought to offer a mitigation strategy for reducing global warming. Woody agro-ecosystems such as fruit tree are among the least quantified and most uncertain elements in the terrestrial carbon cycle. $CO_2$ and energy fluxes were measured by the eddy covariance method on a 15-year old apple orchard of South Korea in 2006. Environmental parameters (net radiation, precipitation, etc.) were measured along with fluxes. The results showed that during late June, the ability to sequestrate C was significant at an apple orchard ecosystem and it reached on the peak of $-6.5g\;C\;m^{-2}\;d^{-1}$. We found that in the apple orchard, the daily average of net ecosystem exchange of $CO_2$ (NEE) and cumulative NEE on a yearly basis were $-1.1g\;C\;m^{-2}$ and $-396.9g\;C\;m^{-2}$, respectively. These results reveal that there is high carbon sequestration in the apple orchard of South Korea, which is the same magnitude with repect to that of a natural forested ecosystem of the same biome rank (temperate-humid deciduous forest).

본 연구는 국내 사과원 생태계에 대한 $CO_2$ 및 에너지(현열, 잠열) 플럭스를 에디공분산 기법으로 정량화하고 이들의 계절적 변화를 분석하였다. 2006년 국내 사과원 생태계의 누적 NEE는 $-396.9g\;C\;m^{-2}$으로, 유사한 환경 조건에서 수행된 이탈리아의 사과원 생태계의 NEE ($-380.0g\;C\;m^{-2}$)와 아주 비슷한 것으로 분석되었다. 또한 양국의 사과원 생태계에서 일 최대 NEE는 6월 하순에 관측되었다. 다만, 국내 장마기간에 해당되는 7월의 NEE는 양국의 과수원 생태계에서 다른 양상을 나타내었다. 이와 같이 과수원 생태계와 같은 집약적으로 관리되는 생태시스템에서도 NEE의 변화가 관개 등 영농활동에 의해서 큰 영향을 받지만, 기온, 강수량 등 환경조건에도 영향을 많이 받는 것으로 조사되었다. 국내 사과원 생태계의 탄소 흡수능력에 대한 보다 정확한 평가를 위해서는 3년 이상의 장기적인 플럭스 자료를 토대로 추가적인 연구가 요구되며, 상호 검증과 탄소수지 평가를 위해서는 챔버방식의 생태학적 접근도 추가로 필요할 것이다.

Keywords

References

  1. Aubinet, M, A. Grelle, A. Ibrom, U. Rannik, J. Moncrieff, T. Foken, A. S. Kowalski, P. H. Martin, P. Berbigier, C. Bernhofer, R. Clement, J. Elbers, A. Granier, T. Grunwald, K. Morgenstern, K. Pilegaard, C. Rebmann, W. Snijders, R. Valentini, and T. Vesala, 2000: Estimates of the annual net carbon and water exchange of forests: the EUROFLUX Methodology. Advances in Ecological Research 30, 113-175.
  2. Baldocchi, D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present, and future. Global Change Biology 9, 479-492. https://doi.org/10.1046/j.1365-2486.2003.00629.x
  3. Canadell, J. G., C. Le Quere, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Hougton, and G. Marland, 2007: Contributions to accelerating $CO_2$ growth from economic activity, carbon intensity and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the USA, 104(47), 18866-18870. https://doi.org/10.1073/pnas.0702737104
  4. FAOSTAT, 2013: Statistical Databases. Agriculture Data Collection (Primary Crops), FAO Food and Agriculture Organization of the United Nations, Rome. http://faostat3.fao.org/browse/Q/QC/E, data referring to the year 2013 last view November 2016.
  5. Hong, J, H. J. Kwon, J. H. Lim, Y. H. Byun, J. Lee, and J. Kim, 2009: Standardization of koflux Eddy-covariance data processing. Korean journal of Agricultural and Forest Meteorology 11(1), 19-26. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.1.019
  6. IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1-30.
  7. Kang, M., J. Kim, H. S. Kim, B. M. Thakuri, and J. H. Chun, 2014: On the nighttime correction of $CO_2$ flux measured by eddy covariance over temperature forests in complex terrain. Korean Journal of Agricultural and Forest Meteorology 16(3), 233-245. https://doi.org/10.5532/KJAFM.2014.16.3.233
  8. KMA, 2011: Climatological Normals of KOREA. Korea Meteorlogical Administration, Seoul, KOREA, 678pp.
  9. KOSIS, 2016: Statistical Databases. Agriculture Data Collection (Crops), Korean Statistical Information Service, http://kosis.kr/eng, data referring to the year 2016 last view November 2016.
  10. Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration review and improved algorithm. Global Change Biology 11(9), 1424-1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
  11. Saito, M., A. Miyata, H. Nagai, and T. Yamada, 2005: Seasonal vatiation of carbon dioxide exchange in rice paddy field in Japan. Agricultural and Forest Meteorology, 135, 93-109. https://doi.org/10.1016/j.agrformet.2005.10.007
  12. Saitoh, T. M., I. Tamagawa, H. Muraoka, N. -Y. M. Lee, Y. Yashiro, and H. Koizumi, 2010: Carbon dioxide exchange in a cool-temperature evergreen coniferous forest over complex topography in Japan during two years with contrasting climates. Journal of Plant Research 123, 473-483. https://doi.org/10.1007/s10265-009-0308-7
  13. Schimel, D. S., J. I. House, K. A. Hibbard, B. Bousquet, P. Ciais, P. Peylin, B. H. Braswell, M.J. Apps, D. Baker, A. Bondeau, J. Canadell, G. Churkina, W. Cramer, A. S. Denning, C. B. Field, P. G. Friedlingstein, C. Goodale, M. Heimann, R. A. Houghton, J. M. Melillo, B. Moore III, D. Murdiyarso, I. Noble, S. W. Pacala, I. C. Prentice, M. R. Raupach, P. J. Rayner, R. J. Scholes, W. L. Steffen, and C. Wirth, 2001: Recent pattern and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169-172. https://doi.org/10.1038/35102500
  14. Schulze, E. D., 2006: Biological control of the terrestrial carbon sink. Biogeosciences 3, 147-166. https://doi.org/10.5194/bg-3-147-2006
  15. Testi, L., F. Orgaz, and F. Villalobos, 2008: Carbon exchange and water use efficiency of a growing, irrigated olive orchard. Environmental and Experimental Botany 63, 168-177. https://doi.org/10.1016/j.envexpbot.2007.11.006
  16. Ueyama, M., K. Ichii, N. Saigusa, T. Hirano, M. Alberto, J., Asanuma, M. S. Bret-Harte, C., Edgar, S. E. Euskirchen, S. J. Han, Y.-J. Hsia, M. Kang, J. Kim, K. Kitamura, Y. Kominami, H. Kondo, A Kotani, Y. Kosugi, S.-G. Li, Y. N. Li, T. Maeda, Y. Matsuura, A. Miyata, Y. Mizoguchi, T. Ohta, T. M. Saitoh, T. Shimizu, K. Takagi, Y. Tang, H. Wang, Y. Yasuda, G.-R. Yu, Y.-P. Zhang, F.-H. Zhao, N. Zimov, and S. A. Zimov, 2013: An integrated flux database for Asia. International Joint Conference of AsiaFlux, HESSS, and KSAFM, Seoul, Korea, AsiaFlux, HESSS, and KSAFM.
  17. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorology society 106(447), 85-100. https://doi.org/10.1002/qj.49710644707
  18. Wilczak, J. M., S. T. Oncley, and S. T. Stage, 2001: Sonic anemometer tilts correction algotithms. Boundary-Layer Meteorology 99(1), 127-150. https://doi.org/10.1023/A:1018966204465
  19. Wolf, S., W. Eugster, C. Potvin, and N. Buchmann, 2011: Strong seasonal variations in net ecosystem $CO_2$ exchange of a tropical pasture and afforestration in Panama. Agricultural and Forest Meteorology 151(8), 1139-1151. https://doi.org/10.1016/j.agrformet.2011.04.002
  20. Zanotelli, D., L. Montagnani, G. Manca, and M. Tagliavini, 2013: Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance biometric and continuous soil chamber measurements. Biogeosciences 10, 3089-3108. https://doi.org/10.5194/bg-10-3089-2013
  21. Zhang, Y., Y. Shen, X. Xu, H. Sun, F. Li, and Q. Wang, 2013: Characteristics of the water-energy-carbon fluxes of irrigated pear (Pyrus bretschneideri Rehd.) orchards in the North China plain. Agricultural Water Management 128, 140-148. https://doi.org/10.1016/j.agwat.2013.07.007