DOI QR코드

DOI QR Code

ACP와 AUTODYN을 이용한 방호·방폭 보강 복합패널 구조해석

Structural Analysis of Impact·Blast Resistant Composite Panel using ACP and AUTODYN

  • Kim, Woonhak (Department of Civil Safety and Environmental Engineering, University of Hankyong Nationnal) ;
  • Kang, Seokwon (Department of Civil Safety and Environmental Engineering, University of Hankyong Nationnal)
  • 투고 : 2016.12.12
  • 심사 : 2016.12.19
  • 발행 : 2016.12.31

초록

방호 방폭 보강용 복합재료의 특성상 모델을 구성하고 사용하기 위해서는 재료 각각의 물성치가 필요하며, 이러한 물성 데이터를 도출하기 위해서는 수많은 실험을 통해 도출된 결과를 여러 계산식을 통하여 도출된 값으로 입력해야 하며, 일반적인 재료가 아닌 특수 목적용 소재의 경우는 이를 수행하는데 많은 어려움이 있다. 본 연구에서는 Ansys Workbench 환경에서 제공하는 복합재 적용 물성을 적용하여 ACP와 AUTODYN에서 방호 방폭 보강용 복합섬유 패널의 모델링 및 구조 해석을 수행하였다.

To make a model of a Impact/Blast resistant composite material and perform the analysis, material properties of the composite material are required. In order to obtain such a property value, it is necessary to input the result obtained by performing a lot of material tests by the calculation formula of the situation, and there is a lot of difficulty in the case of a special purpose material which is not a general material. In this study, modeling and structural analysis of composite fiber panels for protection and explosion - proofing were performed in ACP(ANSYS Composite PrePost) and AUTODYN by applying the application properties of composites provided in Ansys Workbench environment.

키워드

참고문헌

  1. Tsai, S. W. and Wu, E. M. A general theory of strength for anisotropic materials. Journal of Composite Materials. vol. 5, pp. 58-80, 1971 https://doi.org/10.1177/002199837100500106
  2. S. Hiermaier, W. Riedel, C.J. Hayhurst, R.A. Clegg, C.M. Wentzel, Advanced Material Models for Hypervelocity Impact Simulations, EMI-Report No. E43/99, ESA CR(P) 4305, 1999.
  3. W. Riedel, W. Harwick, D.M. White, R.A. Clegg, Advanced Material Damage Models for Numerical Simulation Codes, EMI-Report No. I 75/03, ESA CR(P) 4397, October 2003.
  4. J.K. Chen, F.A.Allahdadi, C.T.Sun, "A Quadratic Yield Function for Fiber-Reinforced Composites", Journal of Composite Materials, vol. 31, No. 8, 1997.
  5. C.T. Sun and S. Li, "Three-Dimensional Effective Elastic Constants for Thick Laminates", Journal of Composite Materials, vol. 22, 1988.
  6. C.E. Anderson, P.A. Cox, et. al. "A Constitutive Formulation for Anisotropic Materials Suitable for Wave Propagation Computer programme-II", Comp. Mech., vol. 15, p201-223, 1994. https://doi.org/10.1007/BF00375030
  7. R.M. Jones, "Mechanics of Composite Materials", McGraw-Hill, 1975.
  8. M.A. Meyers, "Dynamic Behavior of Materials", John Wiley & Sons, 1994 - ISBN 0-471-58262-X.
  9. W.C. Kim, C.K.H. Dharan, Analysis of five-point bending for determination of the interlaminar shear strength of unidirectional composite materials, Composite Structures, Vol. 30, 1995, 241-251. https://doi.org/10.1016/0263-8223(94)00015-8
  10. ASTM standard D3846-79 (1985), ASTM Standards and Literature References for Composite Materials, 2nd Ed., American Society for Testing and Materials, Philadelphia, PA, 1990.
  11. R.A. Clegg, C.J. Hayhurst, J.G. Leahy, M. Deutekom,. "Application of a Coupled Anisotropic Material Model to High Velocity Impact of Composite Textile Armour", presented at the 18th Int. Symposium on Ballistics, San Antonio, USA, 1999
  12. D.M. White, E.A. Taylor, R.A. Clegg, "Numerical Simulation and Experimental Characterisation of Direct Hypervelocity Impact on a Spacecraft Hybrid Carbon Fiber/Kevlar Composite Structure", Int. J. Impact Eng., vol. 29, 2003, pp779-790. https://doi.org/10.1016/j.ijimpeng.2003.10.024
  13. Autodyn Composite modeling. Ansys, Inc