DOI QR코드

DOI QR Code

Electrospinning-based Fabrication and Electrochemical Characterization of Lithium-ion Battery Electrode Materials

전기방사 기술을 이용한 리튬 이온배터리 양극용 리튬-니켈-코발트 산화물 나노 구조체 제조 및 전기화학적 특성

  • Seo, Yeongmin (Department of Organic and Nano Engineering and Institute of Nano Science and Technology, Hanyang University) ;
  • Jang, Kihun (Department of Organic and Nano Engineering and Institute of Nano Science and Technology, Hanyang University) ;
  • Ahn, Heejoon (Department of Organic and Nano Engineering and Institute of Nano Science and Technology, Hanyang University)
  • 서영민 (한양대학교 유기나노공학과) ;
  • 장기훈 (한양대학교 유기나노공학과) ;
  • 안희준 (한양대학교 유기나노공학과)
  • Received : 2016.10.25
  • Accepted : 2016.12.18
  • Published : 2016.12.31

Abstract

Lithium-ion batteries are products of next-generation energy storage technology that find various applications, e.g., in compact electronic devices and power sources of smart grids, because of their high energy density, low self-discharge, and long life cycles. To be utilized as a power source for a smart grid, lithium-ion batteries require not only a high energy density, but also a high power density. Power density is related to the amount of lithium-ion movement per hour and the surface area of battery electrodes. In this study, an electrospinning technique was used to fabricate a lithium-nickel-cobalt oxide nano-web (LNCOw) with a high specific surface area. The morphology of the LNCOw was investigated by field-emission scanning electron microscopy (FE-SEM), which showed that the LNCOw had an average fiber diameter of 350 nm. Thermogravimetric analysis was performed to determine the optimal temperature for LNCOw synthesis. Furthermore, X-ray diffraction analysis confirmed that the nano-webs consisted of $LiNi_{0.7}Co_{0.3}O_2$. Finally, the specific capacity of LNCOw electrodes was found to be 133.4 mAh/g at 0.2 C-rate, as measured using chronopotentiometry.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Y. P. Wu, C. Wan, C. Jiang, and S. B. Fang, "Lithium Ion Secondary Batteries", Chemical Industry Press, Beijing, 2002.
  2. B. Dunn, H. Kamath, and J. M. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices", Science, 2011, 334, 928-935. https://doi.org/10.1126/science.1212741
  3. C. Liu, F. Li, L. P. Ma, and H. M. Cheng, "Advanced Materials for Energy Storage", Adv. Mater., 2012, 22, E28-E62.
  4. B. Scrosati and J. Garche, "Lithium Batteries: Status, Prospects and Future", J. Power Sources, 2010, 195, 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
  5. M. Dahbi, I. Saadoune, and J. M. Amarilla, "$LixNi_{0.7}Co_{0.3}O_2$ Electrode Material: Structural, Physical and Electrochemical Investigations", Electrochim. Acta, 2008, 53, 5266-5271. https://doi.org/10.1016/j.electacta.2008.02.072
  6. G. Du, N. Sharma, V. K. Peterson, J. A. Kimpton, D. Jia, and Z. Guo, "Br-Doped $Li_4Ti_5O_{12}$ and Composite $TiO_2$ Anodes for Lithium Ion Batteries: Synchrotron X-ray and in situ Neutron Diffraction Studies", Adv. Funct. Mater., 2011, 21, 3990-3997. https://doi.org/10.1002/adfm.201100846
  7. J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries", Chem. Mater., 2010, 22, 587-603. https://doi.org/10.1021/cm901452z
  8. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges inthe Development of Advanced Li-ion Batteries", Energ. Environ. Sci., 2011, 4, 3243-3262. https://doi.org/10.1039/c1ee01598b
  9. T. M. Bandhauer, S. Garimella, and T. F. Fuller, "A Critical Review of thermalissues in Lithiumion Batteries", J. Electrochem. Soc., 2011, 158, R1-R25. https://doi.org/10.1149/1.3515880
  10. P. G. Bruce, B. Scrosati, and J.-M. Tarascon, "Nanomaterials for Rechargeable Lithium Batteries", Angew. Chem. Int. Ed., 2008, 47, 2930-2946. https://doi.org/10.1002/anie.200702505
  11. H. Lee, P. Muralidharan, R. Ruffo, C. Mari, Y. Cui, and D. K. Kim, "Ultrathin Spinel $LiMn_2O_4$ Nanowires as High Power Cathode Materials for Lithium Ion Batteries", Nano Lett., 2010, 10, 3852-3856. https://doi.org/10.1021/nl101047f
  12. N. V. Kosova, E. T. Devyatkina, and V. V. Kaichev, "Optimization of $Ni^{2+}$/$Ni^{3+}$ Ratio in Layered Li(Ni,Mn,Co)$O_2$ Cathodes for Better Electrochemistry", J. Power Sources, 2007, 174, 965-969. https://doi.org/10.1016/j.jpowsour.2007.06.051
  13. R. M. Nezarati, M. B. Eifert, and E. C. Hernandez, "Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology", Tissue Eng., Part C, 2013, 19, 810-819. https://doi.org/10.1089/ten.tec.2012.0671
  14. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, "Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process", Macromolecules, 2004, 37, 573-578. https://doi.org/10.1021/ma0351975
  15. B. K. Raghavan and D. W. Coffin, "Control of Inter-fiber Fusing for Nanofiber Webs via Electrospinning", J. Eng. Fiber Fabr., 2011, 6, 1-5.
  16. H. H. Htike, L. Chen, and S. Sachiko, "The Effect of Relative Humidity on Electrospinning of Poly(vinyl alcohol) with Soluble Eggshell Membrane", J. Text. Eng., 2012, 58, 9-12. https://doi.org/10.4188/jte.58.9
  17. C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe, "Electrospinning versus Fibre Production Methods: from Specifics to Technological Convergence", Chem. Soc. Rev., 2012, 41, 4708-4735. https://doi.org/10.1039/c2cs35083a
  18. X. Li, F. Kang, and W. Shen, "A Comparative Investigation on Multiwalled Carbon Nanotubes and Carbon Black as Conducting Additive in $LiNi_{0.7}Co_{0.3}O_2$", Electrochem. Solid-State Lett., 2006, 9, A126-A129. https://doi.org/10.1149/1.2161442
  19. J. Su, Y. Su, and M. Guo, "Synthesis of Layered $LiNi_{0.7}Co_{0.3}O_2$ Cathode Materials by a Homogeneous Precipitation Route", J. New Mat. Electrochem. System, 2007, 10, 91-94.
  20. L. Li, S. Peng, Y. Cheah, P. Teh, J. Wang, G. Wee, Y. Ko, C. Wong, and M. Srinivasan, "Electrospun Porous $NiCo_2O_4$ Nanotubes as Advanced Electrodes for Electrochemical Capacitors", Chem. Eur. J., 2013, 19, 5893.