DOI QR코드

DOI QR Code

바위채송화(돌나물과)집단의 유전적 구조: 유전자 이동과 물리적 장벽에 관한 통찰

Population genetic structure of Sedum polytrichoides (Crassulaceae): Insights into barriers to gene flow

  • 정미윤 (경상대학교 생물학과및기초과학연구소) ;
  • ;
  • 정명기 (경상대학교 생물학과및기초과학연구소)
  • Chung, Mi Yoon (Division of Life Science and the Research Institute of Natural Science, Gyeongsang National University) ;
  • Lopez-Pujol, Jordi (BioC-GReB, Botanic Institute of Barcelona (IBB-CSIC-ICUB)) ;
  • Chung, Myong Gi (Division of Life Science and the Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2016.11.24
  • 심사 : 2016.12.13
  • 발행 : 2016.12.30

초록

한반도 남동부에 위치한 주왕산 국립공원과 그 인접산지는 식물 개체군의 유전자 이동에 대한 물리적 장벽의 영향을 시험하기 위한 훌륭한 모델 시스템이다. 우리는 식물종의 경우, 격리된 집단이 연속적인 분포를 보이는 집단보다 유전적인 분화 정도가 더 클 것으로 예측했다. 바위채송화 대부분의 집단은 4곳의 고립된 계곡에서 생육하며, 10개 집단에서 12 종류의 알로자임 유전좌위를 사용하여 유전적 다양성과 구조를 평가했다. 저자들은 이 연구와 기존 연구된 둥근잎꿩의비름(4곳 계곡에서 격리되어 생육)과 기린초(상대적으로 연속적으로 분포) 결과와 비교했다. 우리는 기린초 집단내 유전적 변이가 중간 수준임을 발견했다($H_e=0.112$). 바위채송화 집단간 분기 수준도 중간 수준($F_{ST}=0.250$)이었고 예상대로 둥근잎꿩의비름(0.261)과 유사했지만 기린초(0.165)보다 상당히 높았다. 분자분산분석(AMOVA) 결과 바위채송화와 둥근잎꿩의비름은 기린초(4%)보다 계곡간 변이(각각 19%) 비율이 높았다. STRUCTURE 프로그램 분석에 의하면 대부분의 이런 변이는 중간에 있는 두 계곡간의 유전적 조성 차이 때문이다. 저자들은 종간에 관찰된 분화 수준의 차이(즉, 기린초 대 바위채송화와 둥근잎꿩의비름)는 연구 지역 내의 그들의 분포 차이에 기인한다고 결론지었다.

An area comprising Juwangsan National Park and its adjacent mountains (southeastern Korean Peninsula) is a good model system for testing the effects of physical barriers to gene flows in plant populations. We predicted that plant species consisting of isolated populations are genetically more differentiated than those that are rather continuously distributed. Most populations of Sedum polytrichoides occur in four isolated valleys, and we assessed the genetic variability and structures using twelve allozyme loci in ten populations. We also compared the present results to earlier findings pertaining to the two co-occurring herbs Hylotelephium ussuriense (${\equiv}$ Sedum ussuriense) (growing only in the four isolated valleys) and S. kamtschaticum (rather continuously distributed). We found moderate levels of within-population genetic variation in S. polytrichoides ($H_{e}=0.112$). Estimates of among-population divergence in S. polytrichoides were also moderate ($F_{ST}=0.250$) and, as expected, very similar to that of H. ussuriense (0.261) but considerably higher than the variation in S. kamtschaticum (0.165). An analysis of molecular variance (AMOVA) revealed that S. polytrichoides and H. ussuriense had higher percentages of among-valley variation (19% each) than S. kamtschaticum (4%). Most of this variation, as also indicated by the STRUCTURE program, was due to differences in genetic profiles between the two central valleys. We concluded that the genetic differences observed between species (S. kamtschaticum vs. S. polytrichoides and H. ussuriense) are mainly due to differences in their distribution within the study area.

키워드

참고문헌

  1. Barrett, S. C. H. and J. R. Kohn. 1991. Genetic and evolutionary consequences of small population size in plants: implications for conservation. In Genetics and Conservation of Rare Plants. Falk, D. A. and K. E. Holsinger (eds.), Oxford University Press, New York. Pp. 3-30.
  2. Chang, C.-S., H. Kim and T.-Y. Park. 2003. Patterns of allozyme diversity in several selected rare species in Korea and implications for conservation. Biodiversity and Conservation 12: 529-544. https://doi.org/10.1023/A:1022424918477
  3. Charlesworth, B., D. Charlesworth and N. H. Barton. 2003. The effects of genetic and geographic structure on neutral variation. Annual Review of Ecology, Evolution, and Systematics 34: 99-125. https://doi.org/10.1146/annurev.ecolsys.34.011802.132359
  4. Cheliak, W. M. and J. P. Pitel. 1984. Technique for starch gel electrophoresis of enzyme from forest tree species. Information report PI-X-42. Petawawa National Forestry Institute, Chalk River, Ontario, 49 pp.
  5. Chung, M. Y., M. G. Chung, J. Lopez-Pujol, M.-X. Ren, Z.-Y. Zhang and S. J. Park. 2014a. Were the main mountain ranges in the Korean Peninsula a glacial refugium for plants? Insights from the congeneric pair Lilium cernuum - Lilium amabile. Biochemical Systematics and Ecology 53: 36-45. https://doi.org/10.1016/j.bse.2013.12.019
  6. Chung, M. Y., J. Lopez-Pujol and M. G. Chung. 2014b. Comparative genetic structure between Sedum ussuriense and S. kamtschaticum (Crassulaceae), two stonecrops co-occurring on rocky cliffs. American Journal of Botany 101: 946-956. https://doi.org/10.3732/ajb.1400108
  7. Chung, M. Y., J. D. Nason, J. Lopez-Pujol, T. Yamashiro, B.-Y. Yang, Y.-B. Luo and M. G. Chung. 2014c. Genetic consequences of fragmentation on populations of the terrestrial orchid Cymbidium goeringii. Biological Conservation 170: 222-231. https://doi.org/10.1016/j.biocon.2013.12.005
  8. Chung, M. Y., J. Lopez-Pujol, Y. M. Lee, S. H. Oh and M. G. Chung. 2015. Clonal and genetic structure of Iris odaesanensis and Iris rossii (Iridaceae): insights of the Baekdudaegan Mountains as a glacial refugium for boreal and temperate plants. Plant Systematics and Evolution 301: 1397-1409. https://doi.org/10.1007/s00606-014-1168-8
  9. Chung, M. Y., J. Lopez-Pujol and M. G. Chung. 2017. The role of the Baekdudaegan (Korean Peninsula) as a major glacial refugium for plant species: A priority for conservation. Biological Conservation. http://dx.doi.org/10.1016/j.biocon.2016.11.040.
  10. Clayton, J. W. and D. N. Tretiak. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. Journal of the Fisheries Research Board of Canada 29: 1169-1172. https://doi.org/10.1139/f72-172
  11. Cornuet, J. M. and G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014.
  12. Earl, D. A. and B. M. VonHoldt. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359-361. https://doi.org/10.1007/s12686-011-9548-7
  13. Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  14. Fu, K. and H. Ohba. 2001. Crassulaceae. In Flora of China, Vol. 8. Brassicaceae through Saxifragaceae. Wu, Z.-Y. and P. H. Raven (eds.), Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MO. Pp. 202-268.
  15. Godt, M. J. W. and J. L. Hamrick. 2001. Genetic diversity in rare southeastern plants. Natural Areas Journal 21: 61-70.
  16. Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86: 485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627
  17. Hamilton, J. A. and C. G. Eckert. 2007. Population genetic consequences of geographic disjunction: a prairie plant isolated on Great Lakes alvars. Molecular Ecology 16: 1649-1660. https://doi.org/10.1111/j.1365-294X.2007.03241.x
  18. Hamrick, J. L. and M. J. W. Godt. 1990. Allozyme diversity in plant species. In Plant Population Genetics, Breeding and Genetic Resources. Brown, A. H. D., M. T. Clegg, A. L. Kahler and B. S Weir (eds.), Sinauer Associates, Sunderland, MA. Pp. 43-63.
  19. Hardy, O. J. and X. Vekemans. 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618-620. https://doi.org/10.1046/j.1471-8286.2002.00305.x
  20. Haufler, C. H. 1985. Enzyme variability and modes of evolution in Bommeria (Pteridaceae). Systematic Botany 10: 92-104. https://doi.org/10.2307/2418438
  21. Hwang, S. K., B. J. Lee and A. J. Reedman. 2007. Flow lineations and emplacement processes of the Juwangsan tuff, eastern Cheongsong, Korea. Journal of the Geological Society of Korea 43: 463-476. (in Korean)
  22. Karron, J. D. 1987. A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evolutionary Ecology 1: 47-58. https://doi.org/10.1007/BF02067268
  23. Karron, J. D. 1991. Patterns of genetic variation and breeding systems in rare plant species. In Genetics and Conservation of Rare Plants. Falk, D. A. and K. E. Holsinger (eds.), Oxford University Press, New York. Pp. 87-98.
  24. Ku, Y.-B., H. K. Oh, Y. J. Chun and K.-H. Cho. 2011. High genetic differentiation in endangered Sedum ussuriense and implications for its conservation in Korea. Journal of Plant Biology 54: 262-268. https://doi.org/10.1007/s12374-011-9163-x
  25. Landguth, E. L., S. A. Cushman, M. K. Schwartz, K. S. McKelvey, M. Murphy and G. Luikart. 2010. Quantifying the lag time to detect barriers in landscape genetics. Molecular Ecology 19: 4179-4191. https://doi.org/10.1111/j.1365-294X.2010.04808.x
  26. Le Corre, V., S. Dumolin-Lapegue and A. Kremer. 1997. Genetic variation at allozyme and RAPD loci in sessile oak Quercus petraea (Matt.) Liebl.: the role of history and geography. Molecular Ecology 6: 519-529. https://doi.org/10.1046/j.1365-294X.1997.00214.x
  27. Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209-220.
  28. Mitton, J. B., Y. B. Linhart, K. B. Sturgeon and J. L. Hamrick. 1979. Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. Journal of Heredity 70: 86-89. https://doi.org/10.1093/oxfordjournals.jhered.a109220
  29. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.
  30. Nei, M., T. Maruyama and R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1-10. https://doi.org/10.2307/2407137
  31. Ohwi, J. 1965. Flora of Japan. Smithsonian Institute, Washington, D.C, 1066 pp.
  32. Peakall, R. and P. E. Smouse. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  33. Piry, S., G. Luikart and J.-M. Cornuet. 1999. Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity 90: 502-503. https://doi.org/10.1093/jhered/90.4.502
  34. Pritchard, J. K., X. Wen and D. Falush. 2010. Documentation for Structure Software: Version 2.3. Department of Human Genetics, University of Chicago, Chicago. Retrieved Nov. 18, 2013, from http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.4/structure_doc.pdf.
  35. Priya, S. 2007. Demography and native bee pollination of Sedum laxum (Crassulaceae), an endemic, clonal plant in a managed forest matrix landscape of the Siskiyou Mountains. Ph.D. dissertation, University of California, Santa Cruz, CA, 207 pp.
  36. Rousset, F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219-1228.
  37. Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53-65. https://doi.org/10.2307/2408516
  38. Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787-792. https://doi.org/10.1126/science.3576198
  39. Smith, J. M. 1999. Evolutionary Genetics. Oxford University Press, Oxford, 348 pp.
  40. Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. American Fern Journal 73: 9-27. https://doi.org/10.2307/1546611
  41. Su, H., L.-J. Qu, K. He, Z. Zhang, J. Wang, Z. Chen and H. Gu. 2003. The Great Wall of China: a physical barrier to gene flow? Heredity 90: 212-219. https://doi.org/10.1038/sj.hdy.6800237
  42. Thiede, J. and U. Eggli. 2007. Crassulaceae. In The Families and Genera of Vascular Plants, Vol. 9. Kubitzki, K. (ed.), Springer, Berlin. Pp. 83-118.
  43. Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370. https://doi.org/10.2307/2408641
  44. Wright, S. 1965. The interpretation of population structure by Fstatistics with special regard to systems of mating. Evolution 19: 395-420. https://doi.org/10.2307/2406450
  45. Wyatt, R. 1983. Reproductive biology of the granite outcrop endemic Sedum pusillum (Crassulaceae). Systematic Botany 8: 24-28. https://doi.org/10.2307/2418559
  46. Yamada, T. and M. Maki. 2012. Impact of geographical isolation on genetic differentiation in insular and mainland populations of Weigela coraeensis (Caprifoliaceae) on Honshu and the Izu Islands. Journal of Biogeography 39: 901-917. https://doi.org/10.1111/j.1365-2699.2011.02634.x
  47. Yeh, F. C., R. C. Yang and T. B. J. Boyle. 1999. POPGENE version 1.31-Microsoft Windows-based freeware for population genetic analysis. Quick Users' Guide. University of Alberta, Edmonton.
  48. Zhang, Z.-Y., X.-M. Zheng and S. Ge. 2007. Population genetic structure of Vitex negundo (Verbenaceae) in Three-Gorge Area of the Yangtze River: the riverine barrier to seed dispersal in plants. Biochemical Systematics and Ecology 35: 506-516. https://doi.org/10.1016/j.bse.2007.01.014

피인용 문헌

  1. Notes on genetic variation in Sedum sarmentosum (Crassulaceae): Implications for the origin of southern Korean populations vol.46, pp.4, 2016, https://doi.org/10.11110/kjpt.2016.46.4.371
  2. Cadmium accumulation and subcellular distribution in populations of Hylotelephium spectabile (Boreau) H. Ohba vol.25, pp.31, 2018, https://doi.org/10.1007/s11356-018-3065-0