DOI QR코드

DOI QR Code

The Effects of Oxygen Content on Microstructure and Mechanical Properties of Ti-Al-Fe-Si-O alloy

산소함량에 따른 Ti-Al-Fe-Si-O 합금의 기계적 특성 및 미세조직 변화

  • Bae, Jin Joo (Metallic Materials Division, Korea Institute of Materials Science) ;
  • Yeom, Jong Taek (Metallic Materials Division, Korea Institute of Materials Science) ;
  • Park, Chan Hee (Metallic Materials Division, Korea Institute of Materials Science) ;
  • Hong, Jae Keun (Metallic Materials Division, Korea Institute of Materials Science) ;
  • Kim, Senog Woong (Metallic Materials Division, Korea Institute of Materials Science) ;
  • Yoon, Seog Young (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Sang Won (Metallic Materials Division, Korea Institute of Materials Science)
  • 배진주 (재료연구소 금속재료연구본부) ;
  • 염종택 (재료연구소 금속재료연구본부) ;
  • 박찬희 (재료연구소 금속재료연구본부) ;
  • 홍재근 (재료연구소 금속재료연구본부) ;
  • 김성웅 (재료연구소 금속재료연구본부) ;
  • 윤석영 (부산대학교 재료공학과) ;
  • 이상원 (재료연구소 금속재료연구본부)
  • Received : 2016.09.07
  • Accepted : 2016.10.04
  • Published : 2016.11.30

Abstract

The effect of the oxygen content and the annealing temperature on the tensile behavior of the Ti-1.5Al-3Fe-0.25Si-(0.1~0.5)O alloy was investigated. The tensile properties were dependent on the volume fraction of the microstructure constituents, i.e. the equixed ${\alpha}$, equixed ${\beta}$ and lamellar ${\alpha}$. The results showed that the O-partitioned equixed ${\alpha}$ had a much higher strength compared to the equixed ${\beta}$. The strength of the lamellar ${\alpha}$ increased with increasing the annealing temperature because the O content of the lamellar ${\alpha}$ increased. Ti-1.5Al-3Fe-0.25Si-0.3O alloy annealed to $900^{\circ}C$ where the volume fraction of lamellar ${\alpha}$ was the highest exhibited an excellent combination of the strength (1198.5 MPa) and ductility (27.5%). The effect of the lamellar ${\alpha}$ on the ductility was discussed.

Keywords

References

  1. Y. H. Song, J. H. Kang, C. H. Park, S. W. Kim, Y. T. Hyun, N. H. Kang, and J. T. Yeom : Korean J. Met. Mater., 50 (2012) 477.
  2. R. Boyer, G. Welsch, and E. W. Collins : Materials Properties Handbook, Titanium Alloys, ASM International, Materials Park (1994).
  3. H. Fujii, T. Maeda : Nippon Steel & Sumitomo Metal Technical Report, 106 (2014) 16.
  4. H. Fujii : Mater. Sci. Eng. A, 243 (1998) 103. https://doi.org/10.1016/S0921-5093(97)00786-7
  5. H. Fujii and K. Takahashi : Nippon Steel Technical Report, 85 (2002) 113.
  6. H. Fujii, K. Fujisawa, M. Ishii, and Y. Yamashita : Nippon Steel Technical Report, 85 (2002) 107.
  7. H. Choe, S. M. Abkowitz, S. Abkowitz, and D. C. Dundada : J. Alloys Compd., 390 (2005) 62. https://doi.org/10.1016/j.jallcom.2004.08.021
  8. Y. Okazaki, Y. Ito, A. Ito, and T. Tateishi : Mater. Trans. 34 (1993) 1217. https://doi.org/10.2320/matertrans1989.34.1217
  9. Y. Sang, D. Xu, R. Yang, and Z. X. Guo : Mater. Sci. Eng. A 260 (1999) 269. https://doi.org/10.1016/S0921-5093(98)00886-7
  10. D. R. N. Correa, F. B. Vicente, R. O. Araujo, M. L. Lourenco, P. K. B. Kuroda, M. A. R. Buzalaf, and C. R. Grandini : J. Mater. Reas. Tech., 4 (2015) 180. https://doi.org/10.1016/j.jmrt.2015.02.007
  11. Y. Q. Zhao, S. W. Xin, and W. D. Zeng : J. Alloys Compd., 481 (2009) 190. https://doi.org/10.1016/j.jallcom.2009.03.042
  12. E. W. Collings : Scr. Mater. 7 (1973) 437.
  13. S. Bin, L. Shufeng, I. Hisashi, U. Junko, and K. Katsuyoshi : 41 (2012) 59.
  14. Y. WEI, H. K. D. H. Bhaheshia, and T. Sourmail : J. Mater. Sci. Technol., 21 (2005) 403.
  15. C. Ouchi, H. Iizumi, and S. Mitao : Mater. Sci. Eng. A, 243 (1998) 186. https://doi.org/10.1016/S0921-5093(97)00799-5
  16. Z. Liu and G. Welsch : Metall. Mater. Trans. A, 19A (19888) 527.
  17. Y.-C. Lin, H-M. Cheng, and Y.-C. Chen : Mater. Des., 54 (2014) 222. https://doi.org/10.1016/j.matdes.2013.08.069
  18. D.-S. Kang, N. Koga, M. Sakata, N. Nakada, T. Tsuchiyama, and S. Takaki : Mater. Sci. Eng. A 606 (2014) 101. https://doi.org/10.1016/j.msea.2014.03.076