DOI QR코드

DOI QR Code

Ferric iron reductase activity of LuxG from Photobacterium leiognathi

Photobacterium leiognathi LuxG 단백질의 철(III) 이온 환원 효소 활성도

  • Lee, Eui Ho (Department of Biochemistry, Chungnam National University) ;
  • Nam, Ki Seok (Department of Biochemistry, Chungnam National University) ;
  • Lee, Seon Kwang (Department of Biochemistry, Chungnam National University) ;
  • Oh, Eugeney (Department of Biochemistry, Chungnam National University) ;
  • Lee, Chan Yong (Department of Biochemistry, Chungnam National University)
  • Received : 2016.09.29
  • Accepted : 2016.12.15
  • Published : 2016.12.31

Abstract

In order to identify the biochemical characteristics of LuxG, the luxG gene from bioluminescence bacteria of Photobacterium leiognathi ATCC 25521 was isolated by PCR-Amplification and inserted into pQE30 vector containing the T5 promoter and 6X His-tag system. The resulting recombinant plasmid was transformed into Escherichia coli to over-express the luxG gene and purify the gene product. The purified LuxG protein demonstrated ferric iron reductase activity and the kinetic parameters of $K_m$ and $V_{max}$ for FMN as well as the NADPH substrates of ferric iron reductase were determined, respectively.

본 연구에서는 발광 세균에 존재하는 LuxG 단백질의 효소학적 성질을 알아내기 위하여 Photobacterium leiognathi ATCC 25521의 luxG 유전자를 중합효소연쇄반응으로 증폭시켜 T5 프로모터와 6X His-tag 시스템을 지닌 pQE 벡터에 삽입시킨 재조합플라스미드를 제조하여 대장균에 형질전환 후 과발현시켜 단백질을 분리, 정제 하였다. 정제된 단백질의 효소학적 실험 결과, 이 단백질은 FMN과 NADPH 기질에 대한 ferric iron reductase의 기능을 갖고 있음을 확인하였으며 이들 기질에 대한 효소 활성도 상수 $K_m$$V_{max}$ 값을 결정하였다.

Keywords

References

  1. Andrew, S.C., Shipley, D., Keen, J.N., Findlay, J.B.C., Harrison, P.M., and Guest, J.R. 1992. The hemoglobin-like protein (HMP) of Escherichia coli has ferrsiderophore reductase activity and its C-terminal domain shares homology with ferredoxin $NADP^+$ reductase. FEBS Lett. 302, 247-252. https://doi.org/10.1016/0014-5793(92)80452-M
  2. Coves, J. and Fontecave, M. 1993. Reduction and mobilization of iron by a NAD(P)H: flavin oxidoreductase from Escherichia coli. Eur. J. Biochem. 211, 635-641. https://doi.org/10.1111/j.1432-1033.1993.tb17591.x
  3. Fontecave, M., Coves, J., and Pierre, J.L. 1994. Ferric reductase or flavin reductase? Biometals 7, 3-8.
  4. Fontecave, M., Eliasson, R., and Reichard, P. 1987. NAD(P)H:flavin oxidoreductase of Escherichia coli: a ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. J. Biol. Chem. 262, 12325-12331.
  5. Haygood, M.G. and Nealson, K.H. 1985. The effect of iron on the growth and luminescence of symbiotic bacterium Vibrio fischeri. Symbiosis 1, 39-51.
  6. Lee, C.Y. and Meighen, E.A. 1992. The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. Biochem. Biophys. Res. Commun. 186, 690-697. https://doi.org/10.1016/0006-291X(92)90802-R
  7. Lee, C.Y., Szittner, R.B., and Meighen, E.A. 1991. The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Nucleotide sequence, difference in gene organzation and high expression in Escherichia coli. Eur. J. Biochem. 201, 161-167. https://doi.org/10.1111/j.1432-1033.1991.tb16269.x
  8. Lee, C.Y., O'Kane, D., and Meighen, E.A. 1994. Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. J. Bacteriol. 176, 2100-2104. https://doi.org/10.1128/jb.176.7.2100-2104.1994
  9. Lummen, P. and Winkler, U.K. 1986. Bioluminescence of outer membrane defective mutants of Photobacterium phosphoreum. FEMS Microbiol. Lett. 39, 293-298.
  10. Meighen, E.A. 1988. Enzymes and genes from the lux operons of bioluminescent bacteria. Annu. Rev. Microbiol. 42, 151-179. https://doi.org/10.1146/annurev.mi.42.100188.001055
  11. Meighen, E.A. 1991. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55, 123-142.
  12. Meighen, E.A. 1994. Genetics of bacterial of bioluminescence. Annu. Rev. Genet. 28, 117-139. https://doi.org/10.1146/annurev.ge.28.120194.001001
  13. Nieland, J.B. 1981. Microbiol iron compounds. Annu. Rev. Biochem. 50, 715-731. https://doi.org/10.1146/annurev.bi.50.070181.003435
  14. Nijvipakul, S., Wongratana, J., Suadee, C., Entsch, B., Ballou, D.P., and Chaiyen, P. 2008. LuxG is a functioning flavin reductase for bacterial luminescence. J. Bacteriol. 190, 1531-1538. https://doi.org/10.1128/JB.01660-07
  15. Spyrou, G., Haggard-Ljungquist, E., Krook, M., Jornvall, H., Nilsson, E., and Reichard, P. 1991. Characterization of flavin reductase gene (fre) of Escherichia coli and construction of a plasmid for over-production of the enzyme. J. Bacteriol. 173, 3673-3679. https://doi.org/10.1128/jb.173.12.3673-3679.1991
  16. Schroder, I., Johnson, E., and De Vries, S. 2003. Microbiol ferric iron reductases. FEMS Microbiol. Rev. 27, 427. https://doi.org/10.1016/S0168-6445(03)00043-3
  17. Stookey, L. 1970. Ferrozine-A new spectrophotometric reagent for iron. Anal. Chem. 42, 779-781. https://doi.org/10.1021/ac60289a016
  18. Stuber, D., Matile, H., and Garotta, G. 1990. System for high expression in Escherichia coli and rapid purification of recombinant proteins: application to epitope mapping, preparation of antibodies, and structure-function analysis, pp. 121-152. In Lefkvoits, I. and Pernis, B. (eds.), Immunological Methods, Vol. IV, Academic Press, New York, USA.
  19. Zenno, S. and Saigo, K. 1994. Identification of the genes encoding NAD(P)H-Flavin oxidoreductase that are similar in sequence to Escherichia coli fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis. J. Bacteriol. 176, 3544-3551. https://doi.org/10.1128/jb.176.12.3544-3551.1994

Cited by

  1. Site Directed Mutagenesis of LuxG as a Flavin Reductase from Bioluminescent Bacteria of Photobacterium leiognathi vol.64, pp.4, 2020, https://doi.org/10.5012/jkcs.2020.64.4.225