DOI QR코드

DOI QR Code

Isolation of secondary metabolites from an Arctic bacterium, Pseudomonas aeruginosa and their antimicrobial activities

북극유래 박테리아, Pseudomonas aeruginosa로 부터 대사산물들의 분리 및 항진균 활성

  • Youn, Ui Joung (Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Kim, Min Ju (Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Han, Se Jong (Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Yim, Jung Han (Division of Life Sciences, Korea Polar Research Institute, KIOST)
  • 윤의중 (극지연구소 생명과학 연구부) ;
  • 김민주 (극지연구소 생명과학 연구부) ;
  • 한세종 (극지연구소 생명과학 연구부) ;
  • 임정한 (극지연구소 생명과학 연구부)
  • Received : 2016.09.27
  • Accepted : 2016.11.03
  • Published : 2016.12.31

Abstract

Chemical study of an Arctic bacterium, Pseudomonas aeruginosa (Pseudomonadaceae) led to the isolation of two diketopiperazines 1 and 2, two phenazine alkaloids 3 and 4, and an indole carbaldehyde 5, along with a benzoic acid derivative 6. The structures of the compounds were confirmed by 1D and 2D NMR, and MS experiments, as well as by comparison of their data with published values. Among the isolates, compounds 5 and 6 were isolated for the first time from P. aeruginosa of the seawater of Arctic Chuckchi Sea. Antimicrobial activities of compounds 1‒6 against a Staphylococcus aureus and Candida albicans were evaluated.

북극 유래 박테리아인 Pseudomonas aeruginosa 균주의 대사산물에 대한 화학적 연구는 벤조산 유도체 6번을 포함하여, 두 개의 diketopiperazine 1과 2, 두 개의 phenazine alkaloid 3과 4, indole carbaldehyde 5번을 분리하였다. 화합물들의 구조는 1D 과 2D NMR, 및 MS 기법들과 기존 보고된 문헌 값 과의 비교에 의하여 동정되었다. 분리된 화합물들 중 5번과 6번은 북극 척지해 해수의 P. aeruginosa로 부터 처음으로 보고 되었다. 대사산물들 1-6의 항균 활성은 Staphylococcus aureus과 and Candida albicans에 대하여 측정하였다.

Keywords

References

  1. Adamczeski, M., Reed, A.R., and Crews, P. 1995. New and known diketopiperazines from the caribbean sponge, Calyx cf. podatypa. J. Nat. Prod. 58, 201-208. https://doi.org/10.1021/np50116a007
  2. Baek, K., Lee, Y.M., Hwang, C.Y., Park, H., Jung, Y.J., Kim, M.K., Hong, S.G., Kim, J.H., and Lee, H.K. 2015. Psychroserpens jangbogonensis sp. nov., a psychrophilic bacterium isolated from Antarctic marine sediment. Int. J. Syst. Evol. Microbiol. 65, 183-188. https://doi.org/10.1099/ijs.0.069740-0
  3. Baron, S.S. and Rowe, J.J. 1981. Antibiotic action of pyocyanin. Antimicrob. Agents Chemother. 20, 814-820. https://doi.org/10.1128/AAC.20.6.814
  4. Buckingham, J. 2011. Dictionary of Natural Products on DVD, CRC Press, BocaRaton, FL, USA.
  5. Dahiya, J.S., Woods, D.L., and Tewari, J.P. 1988. Control of Rhizoctonia solani, causal agent of brown girdling root rot of rapeseed, by Pseudomonas fluorescens. Bot. Bull. Acad. Sin. 29, 135-142.
  6. Dakhama, A., de la Noue, J., and Lavoie, M.C. 1993. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. J. Appl. Phycol. 5, 297-306. https://doi.org/10.1007/BF02186232
  7. David, W., John, M., Robert, W., Peter, C., and Graham, W.T. 1986. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur. J. Biochem. 159, 309-313. https://doi.org/10.1111/j.1432-1033.1986.tb09869.x
  8. Fuller, A.T., Mellows, G., Woolford, M., Banks, G.T., Barrow, K.D., and Chain, E.D. 1971. Pseudomonic acid: an antibiotic produced by Pseudomonas fluoresens. Nature 234, 416-417. https://doi.org/10.1038/234416a0
  9. Gross, H. and Loper, J.E. 2009. Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep. 26, 1408-1446. https://doi.org/10.1039/b817075b
  10. Hassan, H.M. and Irwin, F. 1980. Mechanism of the antibiotic action of pyocyanine. J. Bacteriol. 141, 156-163.
  11. Hernandez, M.E., Kappler, A., and Newman, D.K. 2004. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70, 921-928. https://doi.org/10.1128/AEM.70.2.921-928.2004
  12. Jayatilake, G.S., Thornton, M.P., Leonard, A.C., Grimwade, J.E., and Baker, B.J. 1996. Metabolites from an Antarctic spongeassociated bacterium, Pseudomonas aeruginosa. J. Nat. Prod. 59, 293-296. https://doi.org/10.1021/np960095b
  13. Kim, H., Ralph, J., Lu, F., Ralph, S.A., Boudet, A.M., MacKay, J.J., Sederoff, R.R., Ito, T., Kawai, S., Ohashi, H., et al. 2003. NMR analysis of lignins in CAD- deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Org. Biomol. Chem. 1, 268-281. https://doi.org/10.1039/b209686b
  14. Li, W., Rokni-Zadeh, H., De Vleeschouwer, M., Ghequire, M.G., Sinnaeve, D., Xie, G.L., Rozenski, J., Madder, A., Martins, J.C., and De Mot, R. 2013. The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopep-tides. PLoS One 8, e62946. https://doi.org/10.1371/journal.pone.0062946
  15. Moore, E.R., Tindall, B.J., Dos Santos, V.A.M., Pieper, D.H., Ramos, J.L., and Palleroni, N.J. 2006. The Prokaryotes, pp. 646-703. Springer, New York, USA.
  16. Olgerts, R.P. and Arligues, H.S. 1974. Pseudomonas aeruginosa exotoxin in mice: localization and effects on protein synthesis. Infect. Immun. 9, 540-546.
  17. Rane, M.R., Sarode, P.D., Chaudhari, B.L., and Chincholkar, S.B. 2007. Detection, isolation identification of phenazine-1-carboxylicacid produced by biocontrol strains of Pseudomonas aeruginosa. J. Sci. Ind. Res. 66, 627-631.
  18. Robert, W., Tyrone, P., Graham, T., David, W., John, M., David, S., David, R., and Peter, C. 1987. Pyocyanin and 1-hydroxyphenazine produced by Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro. J. Clin. Invest. 79, 221-229. https://doi.org/10.1172/JCI112787
  19. Wang, C., Yang, Y., Mei, Z., and Yang, X. 2013. Cytotoxic compounds from Laminaria japonica. Chem. Nat. Compd. 49, 699-701. https://doi.org/10.1007/s10600-013-0711-0

Cited by

  1. New Arctic Bacterial Isolates with Relevant Enzymatic Potential vol.25, pp.17, 2016, https://doi.org/10.3390/molecules25173930
  2. The Variety and Inscrutability of Polar Environments as a Resource of Biotechnologically Relevant Molecules vol.8, pp.9, 2016, https://doi.org/10.3390/microorganisms8091422