Acknowledgement
Supported by : 한국연구재단
References
- Bergman, D. & Goel S. (1987). Evaluation of cyclic testing of steel plate devices for added damping and stiffness. Report No. UMCE87-10, University of Michigan, 37.
- Lee, H. & Kim, S. (2011). Hysteretic behaviors of metall ic dampers with the various slit shape. Journal of the Korea institute for structural maintenance and inspection, 15 (5), 199-208. https://doi.org/10.11112/jksmi.2011.15.5.199
- Tsai, K., Chen, H., Hong, C. & Su, Y. (1993). Design of steel triangular plate energy absorbers for seismic-resistant construction. Earthquake Spectra, 9(3), 505-528. https://doi.org/10.1193/1.1585727
- Kobori, T., Miura, Y., Fukusawa, E., Yamada, T., Arita, T. & Takenake, Y. (1992). Development and application of hysteresis steel dampers. In Proceedings of 11th world conference on earthquake engineering, 2341-2346.
- Clark, P., Aiken, I., Tajirian, F., Kasai, K., Ko, E. & Kimura, I. (1999). Design procedures for buildings incorporating hysteretic damping devices. Passive energy dissipation and active control of vibrations of structures, 1-21.
- Pall, A. & Marsh, C. (1982). Response of friction damped braced frames. Journal of Structural Division, ASCE. 108(6), 1313-1323.
- Mualla, I. (2000). Experimental and computational evaluation of a novel friction damper device, PhD thesis, Technical University of Denmark.
- Fitzgerald, T., Anagnos, T., Goodson, M. & Zsutty, T. (1989). Slotted Bolted Connections in Aseismic Design for Concentrically Braced Connections. Earthquake Spectra. 5(2), 383-391. https://doi.org/10.1193/1.1585528
- Robinson, W. (1982). Lead rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engineering & Structural Dynamics. 10(4), 593-604. https://doi.org/10.1002/eqe.4290100408
- Filiatrault, A. & Cherry, S. (1990). Seismic design spectra for friction-damped structures. Journal of Structural Engineering. 116, 334-355.
- Fu, Y. & Cherry, S. (2000). Design of friction damped structures using lateral force procedure. Earthquake engineering & structural dynamics. 29(7), 989-1010. https://doi.org/10.1002/1096-9845(200007)29:7<989::AID-EQE950>3.0.CO;2-7
- Lee, S., Park, J., Lee, S. & Min, K. (2008). Allocation and slip load of friction dampers for a seismically excited building structure based on storey shear force distribution, Engineering Structures. 30(4), 930-940. https://doi.org/10.1016/j.engstruct.2007.03.020
-
Wu, J., Yang, J. & Schmitendorf, W. (1998). Reduced-order H
${\infty}$ and LQR control for wind-excited tall buildings, Engineering Structures. 20(3), 222-236. https://doi.org/10.1016/S0141-0296(97)00081-3 - Korean Architectural Institute. (2009). KBC 2009.
- Kim, D., Kim, J., Kim, D., Ha, I., Ahn, T., Kim, H. & Kim, S. (2010). Experimental study on hybrid damper using a high-damping rubber and a steel pin. 2010 Conference Journal of Architectural Institute of Korea. 30(1), 9-10.
- Lee, H. & Kim, S. (2011). Hysteretic Behaviors of Metallic Dampers with the Various Slit Shape. Journal of The Korea Institute for Structural Maintenance and Inspection. 15(5). 199-208. https://doi.org/10.11112/jksmi.2011.15.5.199
Cited by
- Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers vol.23, pp.1, 2019, https://doi.org/10.5000/EESK.2019.23.1.001