DOI QR코드

DOI QR Code

Stable Inheritance of an Integrated Transgene and Its Expression in Phenylethylisothiocyanate-Enriched Transgenic Chinese cabbage

Phenylethylisothiocyanate 함량이 증진된 형질전환 배추에서의 도입유전자의 후대 유전 및 발현 안정성 검정

  • Park, Ji-Hyun (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Kim, Hyoung-Seok (Korea Institute of Science and Technology Gangneung Institute) ;
  • Lee, Gi-Ho (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Yu, Jae-Gyung (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
  • 박지현 (경희대학교 생명과학대학 원예생명공학과) ;
  • 김형석 (한국과학기술연구원 강릉분원) ;
  • 이기호 (경희대학교 생명과학대학 원예생명공학과) ;
  • 유재경 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박영두 (경희대학교 생명과학대학 원예생명공학과)
  • Received : 2015.06.25
  • Accepted : 2015.07.11
  • Published : 2016.02.29

Abstract

Development of genetically-modified (GM) crops enables the introduction of new traits to the plant to confer characteristics such as disease resistance, herbicide resistance and human health-promoting bioactivity. Successful commercialization of newly developed GM crops requires stable inheritance of integrated T-DNA and newly introduced traits through the multiple generations. This study was carried out to confirm the stable inheritance of the integrated T-DNA in $T_1$ and $T_2$ transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) that was genetically modified to increase concentrations of phenylethylisothiocyanate (PEITC), which is a potential anti-carcinogenic phytochemical. For this purpose, the IGA 1-3 ($T_1$ generation) and IGA 1-3-5 ($T_2$ generation) lines were selected by PCR and a IGA 1-3 transgenic plant ($T_1$ generation) was analyzed to confirm the T-DNA insertion site in the Chinese cabbage genome by VA-TAIL PCR. The results of this study showed that the introduced T-DNA in IGA 1 line was stably inherited to the next generations without any variations in terms of the structure of the transgenes, and this line also showed the expected transgene function that resulted in increased concentration of PEITC through the multiple generations. Finally, we confirmed the increased QR activity in IGA 1 $T_1$ and $T_2$ transgenic lines, which indicates an enhanced potential anti-carcinogenic bioactivity and its stable inheritance in IGA1 $T_1$ and $T_2$ transgenic lines.

GM작물의 개발은 병 저항성, 제초제 저항성, 스트레스 저항성, 기능성 물질의 증진 등의 목적으로 기존 작물에 존재하지 않은 새로운 형질을 도입시킬 수 있게 하였다. 이렇게 개발된 GM작물의 상업화를 위해서는 형질전환 식물체에 도입된 T-DNA가 여러 세대에 걸쳐 안정적인 유전과 표현형의 발현이 요구된다. 본 연구는 암 예방 효과가 있는 PEITC 물질이 증가된 형질전환체, IGA 계통의 $T_1$$T_2$ 세대에서 도입된 T-DNA의 안정성을 확인하였다. 이를 위해 $T_1$ 세대의 IGA 1-3번 계통과 $T_2$ 세대의 IGA 1-3-5번 계통을 PCR로 선발하였으며 선발된 $T_1$ 세대의 IGA 1-3번 계통에서 도입된 T-DNA의 삽입위치를 VA-TAIL PCR로 확인한 결과 배추 게놈 내 intergenic 부위에 삽입되었음을 확인하였다. 또한, 도입 유전자의 세대별 안정성은 IGA 1-3번 계통과 IGA 1-3-5번 계통에서 T-DNA의 내부구조와 flanking 지역을 PCR 분석으로 비교함으로써 확인하였다. 결과적으로 본 연구에서 IGA1번 계통으로 도입된 T-DNA는 구조의 변이 없이 안정적으로 후대로 유전 되었으며, IGA 1번 계통의 $T_1$$T_2$ 세대의 PEITC 함량의 증가로 표현형적 형질 또한 안정적으로 유전 되는 것으로 확인하였다. 마지막으로 IGA 1번 계통의 $T_1$$T_2$ 세대에서 QR 활성을 확인하여 암 예방 효과 또한 확인하였다.

Keywords

References

  1. Benson, A.M., M.J. Hunkeler, and P. Talalay. 1980. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc. Natl. Acad. Sci. USA. 77:5216-5220. https://doi.org/10.1073/pnas.77.9.5216
  2. Bhalla, P.L. Genetic engineering of wheat-current challenges and opportunities. 2006. Trends biotechnol. 24:305-311. https://doi.org/10.1016/j.tibtech.2006.04.008
  3. Brenda A.L., N.S. Prakash, M. Way, M.T. Mann, T.M. Spencer, and R.S. Boddupalli. 2009. Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res. 18:831-840. https://doi.org/10.1007/s11248-009-9265-0
  4. Chen, S., J. Zhang, H. Pu, A. Shen, X, Zhou, W. Long, M. Hu, and C. Qi. 2012. Analysis of insertion copy number and integration site of T-DNA in the genome of transgenic high oelic rapeseed (L.). Plant Gene Trait 2:15-22.
  5. Dai, S., P. Zheng, P. Marmey, S. Zhang, W. Tian, W., S. Chen, R.N. Beachy, and C. Fauquet. 2001. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 7:25-33. https://doi.org/10.1023/A:1009687511633
  6. Iyer, L.M., S.P. Kumpatla, M.B. Chandrasekharan, and T.C Hall. 2000. Transgene silencing in monocots. Springer Netherlands 43:323-346. https://doi.org/10.1023/A:1006412318311
  7. Kim, J.S., J. Kim, T.H. Lee, K.M. Jun, T.H. Kim, Y.H. Kim, H.M. Park, J.S. Jeon, G. An, U.H. Yoon, B.H. Nahm, and Y.K. Kim. 2012. FSTVAL: a new web tool to validate bulk flanking sequence tags. Plant Methods 8:19. https://doi.org/10.1186/1746-4811-8-19
  8. Ku, K.M., E.H. Jeffery, and J.A. Juvik. 2014. Optimization of methyl jasmonate application to broccoli florets to enhance health‐promoting phytochemical content. J. Sci. Food Agriculture. 94:2090-2096. https://doi.org/10.1002/jsfa.6529
  9. Kumpatla, S.P., M.B. Chandrasekharan, L.M. Iyer, G. Li, T.C. Hall. 1998. Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci. 3:97-104. https://doi.org/10.1016/S1360-1385(97)01194-1
  10. Liu, Y. and R. Whittier. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674-681. https://doi.org/10.1016/0888-7543(95)80010-J
  11. Liu, Y.G. and Y. Chen. 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649-656. https://doi.org/10.2144/000112601
  12. Lee, G.H, J.G. Yu, and Y.D. Park. 2015. Development of an effective PCR technique for analyzing T-DNA integration sites in Brassica species and its application. Korean J. Hortic. Sci. Technol. 33.242-250.
  13. Matzke, M. A. and A.J.M. Matzke. 1995. How and why do plants inactivate homologous (trans) genes?. Plant Physiol. 107:679-685. https://doi.org/10.1104/pp.107.3.679
  14. Park, J.H., S.J. Lee, B.R. Kim, E.T. Woo, J.S. Lee, E.H. Han, Y.H. Lee, and Y.D. Park. 2011. Isolation of myrosinase and glutathione S-transferase genes and transformation of these genes to develop phenylethylisothiocyanate enriching Chinese cabbage. Korean J. Hortic. Sci. Technol. 29:623-632.
  15. Pla, M., J.L. La Paz, and C. Vicient. 2012. Insert stability and transgenic plant risk. Encyclopedia Biotechnol. Agriculture Food.
  16. Qin, Y., H.I. Ahn, S.Y. Park, M.H. Lim, H.J. Woo, K.S. Shin, J.H. Lee, H.S. Cho, S.H. Baek, S.K. Park and S.J. Kweon. 2014. T-DNA inheritance stability of resveratrol rice Iksan526 over multi-generations. Plant Breed. Biotechnol. 2:268-275. https://doi.org/10.9787/PBB.2014.2.3.268
  17. Shou, H., B.R. Frame, S.A. Whitham, and K. Wang. 2004. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol. Breed. 13:201-208. https://doi.org/10.1023/B:MOLB.0000018767.64586.53
  18. Stoger, E., J.K. Ma, R. Fischer, and P. Christou. 2005. Sowing the seeds of success: pharmaceutical proteins from plants. Curr. Opin. Biotechnol. 16:167-173. https://doi.org/10.1016/j.copbio.2005.01.005
  19. Vain, P., B. Worland, A. Kohli, J.W. Snape, P. Christou, G.C. Allen, and W.F. Thompson. 1999. Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant J. 18:233-242. https://doi.org/10.1046/j.1365-313X.1999.00446.x
  20. Vaucheret, H., C. Beclin, T. Elmayan, F. Feuerbach, C. Godon, J.B. Morel, P. Mourrain, J.C. Palauqui, and S. Vernhettes. 1998. Transgene‐induced gene silencing in plants. Plant J. 16:651-659. https://doi.org/10.1046/j.1365-313x.1998.00337.x
  21. Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J.H. Mun, I. Bancroft, F. Cheng, S. Huang, X. Li, W. Hua, J. Wang, X. Wang, M. Freeling, J.C. Pires, A.H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A.G. Sharpe, B.S. Park, B. Weisshaar, B. Liu, B. Li, B. B. Liu, C. Tong, C. Song, C. Duran, C. Peng, C. Geng, C. Koh, C. Lin, D. Edwards, D. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassalle, G.J. King, G. Bonnema, H. Tang, H. Wang, H. Belcram, H. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H. Jin, I.A. Parkin, J. Batley, J.S. Kim, J. Just, J. Li, J. Xu, J. Deng, J.A. Kim, J. Li, J. Yu, J. Meng, J. Wang, J. Min, J. Poulain, J. Wang, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M.G. Links, M/ Zhao, M. Jin, N. Ramchiary, N. Drou, P.J. Berkman, Q. Cai, Q. Huang, R. Li, S. Tabata, S. Cheng, S. Zhang, S. Zhang, S. Huang, S. Sato, S. Sun, S.J. Kwon, S.R. Choi, T.H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y. Li, Y. Du, Y. Liao, Y. Lim, Y. Narusaka, Y. Wang, Z. Wang, Z. Li, Z. Wang, Z. Xiong, Z. Zhang and H. Abe. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035-1039. https://doi.org/10.1038/ng.919
  22. Yu, J.G., G. H. Lee, J.S. Kim, and Y.D. Park. 2010. An insertional mutagenesis system for analyzing the Chinese cabbage genome using Agrobacterium T‐DNA. Molecules and Cells 29:267-275. https://doi.org/10.1007/s10059-010-0013-3
  23. Yu, J.G., G.H. Lee, J.H. Park, and Y.D. Park. 2014. Characterization and gene co-expression network analysis of a salt tolerance-related gene, BrSSR, in Brassica rapa. Korean J. Hortic. Sci. Technol. 32:845-852. https://doi.org/10.7235/hort.2014.14040