DOI QR코드

DOI QR Code

Electron Microscopy for the Morphological Characterization of Nanocellulose Materials

전자현미경을 이용한 나노셀룰로오스 물질의 형태학적 특성 분석 연구

  • Kwon, Ohkyung (Seoul National University, National Instrumentation Center for Environmental Management, Nanobioimaging Center) ;
  • Shin, Soo-Jeong (Department of Wood and Paper Science, Chungbuk National University)
  • 권오경 (서울대학교 농생명과학공동기기원 나노바이오이미징센터) ;
  • 신수정 (충북대학교 목재종이과학과)
  • Received : 2015.11.24
  • Accepted : 2016.01.30
  • Published : 2016.02.28

Abstract

Electron microscopy is an important investigation and analytical method for the morphological characterization of various cellulosic materials, such as micro-crystalline cellulose (MCC), microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and cellulose nanocrystals (CNC). However, more accurate morphological analysis requires high-quality micrographs acquired from the proper use of an electron microscope and associated sample preparation methods. Understanding the interaction of electron and matter as well as the importance of sample preparation methods, including drying and staining methods, enables the production of high quality images with adequate information on the nanocellulosic materials. This paper provides a brief overview of the micro and nano structural analysis of cellulose, as investigated using transmission and scanning electron microscopy.

Keywords

References

  1. Habibi, Y., Lucia, L. A. and Rojas, O. J., Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chemical Reviews 110(6):3479-3500 (2010). https://doi.org/10.1021/cr900339w
  2. Moon, R. J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J., Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Review 40:3941-3994 (2011). https://doi.org/10.1039/c0cs00108b
  3. Khalil, H.P.S. A., Davoudpour, Y., Islam, Md. N., Mustapha, A., Sudesh, K., Dungani, R. and Jawaid, M., Production and modification of nanofibrillated cellulose using various mechanical process: A review, Carbohydrate Polymers 99:649-665 (2014). https://doi.org/10.1016/j.carbpol.2013.08.069
  4. Mariano, M., Kissi, N. E. and Dufresne, A.,-Cellulose nanocrystals and related nanocomposites: review of some properties and challenges, Journal of Polymer Science, Part B: Polymer Physics 52(12):791-806 (2014). https://doi.org/10.1002/polb.23490
  5. De Broglie, L., The reinterpretation of wave mechanics, Foundations of Physics 1(1): 5-15 (1970). https://doi.org/10.1007/BF00708650
  6. Egerton, R. F., Li, P. and Malac, M., Radiation damage in the TEM and SEM. Micron 35:399-409 (2004). https://doi.org/10.1016/j.micron.2004.02.003
  7. Krivanek, O. L., Dellby, N., Murfitt, M. F. and Chisholm, M. F., Pennycook, T. J., Suenaga, K., Nicolosi, V., Gentle STEM: ADF imaging and EELS at low primary energies, Ultramicroscopy 110(8):935-945 (2010). https://doi.org/10.1016/j.ultramic.2010.02.007
  8. Peng, Y., Gardner, D. J. and Han, Y., Drying cellulose nanofibrils: In search of a suitable method, Cellulose 19:91-102 (2012). https://doi.org/10.1007/s10570-011-9630-z
  9. Peng, Y., Han, Y. and Gardner, D. J., Spray-drying cellulose nanofibrils: Effect of drying process parameters on particle morphology and size distribution, Wood and Fiber Science 44(4):1-14 (2012).
  10. Beck, S., Bouchard, J. and Berry, R., Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules, 13:1486-1494 (2012). https://doi.org/10.1021/bm300191k
  11. Voronova, M. I., Zakharov, A. G., Kuznetsov, O. Y. and Surov, O. V., The effect of drying technique of nanocellulose dispersions on properties of dried materials, Materials Letters 68:164-167 (2012). https://doi.org/10.1016/j.matlet.2011.09.115
  12. Quievy, N., Jacquet, N., Sclavons, M., Deroanne, C., Paquot, M. and Devaux, J., Influence of homogenization and drying on the thermal stability of microfibrillated cellulose, Polymer Degradation Stability 95(3):306-314 (2010). https://doi.org/10.1016/j.polymdegradstab.2009.11.020
  13. Kvien, I., Tanem, B.S. and Oksman, K., Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy, Biomacromolecules 6:3160-3165 (2005). https://doi.org/10.1021/bm050479t
  14. Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J-L., Heux, L., Dubreuil, F. and Rochas, C., The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose, Biomacromolecules 9:57-65 (2008). https://doi.org/10.1021/bm700769p
  15. Chinga-Carrasco, G., Yu, Y. and Diserud, O., Quantitative electron microscopy of cellulose nanofibril structures from Eucalyptus and Pinus radiate Kraft pulp fibers, Microscopy and Microanalysis 17:1-9 (2011). https://doi.org/10.1017/S1431927610094468
  16. Zhao, J., Zhang, W., Zhang, X., Zhang, X., Lu, C. and Deng, Y., Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization, Carbohydrate Polymers 97(2): 695-702 (2013). https://doi.org/10.1016/j.carbpol.2013.05.050
  17. Morais, J.P.S., Rosa, M.D., de Souza, M.D.M., Nascimento, L.D., do Nascimento, D.M. and Cassales, A.R., Extraction and characterization of nanocelluloses from raw cotton linter, Carbohydrate Polymers 91(1): 229-235 (2013). https://doi.org/10.1016/j.carbpol.2012.08.010
  18. Qing, Y., Sabo, R., Zhu, J.Y., Agarwal, U., Cal, Z. and Wu, Y., A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches, Carbohydrate Polymers 97(1): 226-234 (2013). https://doi.org/10.1016/j.carbpol.2013.04.086
  19. Amiralian, N., Annamalai, P. K., Memmott, P., Taran, E., Schmidt, S. and Martin, D. J., Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia's arid zone. RSC Advances 5(41), 32124-32132 (2015). https://doi.org/10.1039/C5RA02936H
  20. Saito, T., Kimura, S., Nishiyama, Y. and Isogai, A., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules 8:2485-2491 (2007). https://doi.org/10.1021/bm0703970
  21. Lu, P., and Hsieh, Y.-L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers, 82(2): 329-336 (2010). https://doi.org/10.1016/j.carbpol.2010.04.073
  22. Tonoli, G.H.D., Teixeira, E.M., Correa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-da-Silva, M.A. and Mattoso, L.H.C., Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties, Carbohydrate Polymers 89(1): 80-88 (2012). https://doi.org/10.1016/j.carbpol.2012.02.052
  23. Zhao, J.Q., Zhang, W., Zhang, X.D., Zhang, X.X., Lu, C.H. and Deng, Y.L., Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization, Carbohydrate Polymers 97(2): 695-702 (2013). https://doi.org/10.1016/j.carbpol.2013.05.050
  24. Amin, K.N.M., Annamalai, P.K., Morrow, I.C. and Martin, D., Production of cellulose nanocrystals via a scalable mechanical method, RSC Advances 5(70): 57133-57140 (2015). https://doi.org/10.1039/C5RA06862B
  25. Xu, X.Z., Liu, F., Jiang, L., Zhu, J.Y., Haagenson, D. and Wiesenborn, D.P., Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents, ACS Applied Materials & Interfaces, 5(8): 2999-3009 (2013). https://doi.org/10.1021/am302624t
  26. Zimmermann, T., Bordeanu, N. and Strub, E., Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential, Carbohydrate Polymers 79:1086-1093 (2010). https://doi.org/10.1016/j.carbpol.2009.10.045
  27. Kwon, O. EFTEM micrographs took at National Instrumentation Center for Environmetal Management, Seoul National University. Not published
  28. Ryu, J.H. and Youn, H.J., Effect of sulfuric acid hydrolysis condition on yield, particle size and surface charge of cellulose nanocrystals, J. of KTAPPI 43(4): 67-75 (2011).

Cited by

  1. 양이온화 뉴레이온(코셀) 직물의 천연염색에 관한 연구 - 오배자를 중심으로 - vol.21, pp.3, 2016, https://doi.org/10.5805/sfti.2019.21.3.356