DOI QR코드

DOI QR Code

Personalized Web Search using Query based User Profile

질의기반 사용자 프로파일을 이용하는 개인화 웹 검색

  • Yoon, Sung Hee (Department of Computer Engineering, Sangmyung University)
  • Received : 2015.12.14
  • Accepted : 2016.02.04
  • Published : 2016.02.29

Abstract

Search engines that rely on morphological matching of user query and web document content do not support individual interests. This research proposes a personalized web search scheme that returns the results that reflect the users' query intent and personal preferences. The performance of the personalized search depends on using an effective user profiling strategy to accurately capture the users' personal interests. In this study, the user profiles are the databases of topic words and customized weights based on the recent user queries and the frequency of topic words in click history. To determine the precise meaning of ambiguous queries and topic words, this strategy uses WordNet to calculate the semantic relatedness to words in the user profile. The experiments were conducted by installing a query expansion and re-ranking modules on the general web search systems. The results showed that this method has 92% precision and 82% recall in the top 10 search results, proving the enhanced performance.

사용자 입력 질의와 웹 문서에 포함된 단어들의 형태적 일치를 검사하여 관련 문서를 검색하는 검색엔진은 사용자의 개인별 관심 분야를 반영하는 검색 결과를 생성하기 어렵다. 본 논문에서는 개인별 관심사를 파악하여 질의 의도에 적합한 내용의 문서를 검색하는 개인화된 웹 검색 방법을 제안한다. 개인화 검색의 성능은 사용자의 개인적 관심사를 정확하게 표현하는 우수한 사용자 프로파일을 생성하는 전략에 좌우된다. 본 연구에서 개인 프로파일은 사용자가 최근 입력한 질의어들과 검색에서 클릭했던 문서들에 나타나는 주제어들이 출현 빈도를 반영한 가중치와 함께 등록된 데이터베이스이다. 특히 중의적 질의어의 정확한 의미를 결정하기 위해 워드넷을 기반으로 프로파일에 등록된 단어들과 의미 유사도를 계산한다. 기존 웹 검색 시스템의 사용자 측에 질의확장 모듈과 순위재계산 모듈을 추가하는 확장모듈을 구축하여 비교 실험하였으며, 본 연구의 방법을 적용한 개인화 웹 검색의 결과는 특히 10위 이내 상위의 결과 문서들에 대해 92%의 정확률과 82%의 재현율을 보여 향상된 성능을 검증하였다.

Keywords

References

  1. Baeza-Yates Ricardo, Reberio-Neto Berthier, Modern Information Retrieval. Addison Wesley, 1999.
  2. Soyeon Park, Joon-Ho Lee, "Investigating Web Search Behavior via Query Log Analysis," Journal of the Korean Society of Information Management,. Vol. 24, No. 4, pp. 255-265. 2002. https://doi.org/10.3743/KOSIM.2007.24.4.255
  3. Soyeon Park, Joon-Ho Lee, Ji Seoung Kim, "An Analysis of Query Types and Topics Submitted to Naver," The Journal of the Korean Society for Library and Information Science, Vol. 39, No. 11, pp. 265-278, 2005. DOI: http://dx.doi.org/10.4275/KSLIS.2005.39.1.265
  4. S. Koratkar, S. A. Takale, "Deriving Concept Based User Profile for Search Engine Personalization," International Journal of Science and Research, Vol.4, No. 6, pp.3086-3089, 2013.
  5. K. W. Leung, W. Ng, D. L. Lee, "Personalized Concept-Based Clustering of Search Engine Queries.," IEEE Transactions on Knowledge and Data Engineering, Vol.20, No. 11, pp.1505-1518, 2008. DOI: http://dx.doi.org/10.1109/TKDE.2008.84
  6. N. Sharma, M. Sharma, O. J. Gupta, "Search Engine Personalization Using Concept Based User Profiles," International Journal of Scientific Research Engineering & Technology(IJSRET), Vol. 2, No. 4, pp.084-087, 2012.
  7. K. R. Remesh Babu, P. Samuel, "Concept Networks for Personalized Web Search Using Genetic Algorithm," International Conference on Information and Communication Technologies (ICICT 2014), pp. 566-573, 2015.
  8. Taebok Yoon, Seungjoon Lee, Kwangho Yoon, Jeehyong Lee, "Design and Application of Multi Concept Model based on Web-using Information," Journal of Internet Computing and Services, Vol. 10, No. 5, pp.95-104, 2009.
  9. Gunwoo Park, Sang-Hoon Lee, "Personalized Search based on Community through Automatic Analysis of Query Patterns," Journal of the Korean Institute of Information Scientists and Engineers: Database, Vol. 36, No. 4, pp. 321-326, 2009.
  10. Dongwook Kim, Sooyong Kan, Hanjoon Kim, Byungjeong Lee, "Folksonomy-based Personalized Web Search System," Journal of Digital Contents Society, Vol. 11, No. 1, pp. 105-116, 2010.
  11. Soyeon Park, "Analysis and Evaluation of Term Suggestion Services of Korean Search Portals: The Case of Naver and Google Korea," Journal of the Korean Society of Information Management, No. 20, Vol. 2, pp.297-315, 2013. DOI: http://dx.doi.org/10.3743/kosim.2013.30.2.297
  12. Sung Hee Yoon, "Using Query Word Senses and User Feedback to Improve Precision of Search Engine," Journal of the Korean Society of Information Management, Vol. 26, No. 4, pp. 81-91, 2009. DOI: http://dx.doi.org/10.3743/kosim.2009.26.4.081
  13. Jeong Heo, Pum-Mo Ryu, Yoon Jae Choi, Hyun Ki Kim, and Cheol Young Ock, "An Issue Event Search System based on Big Data for Decision Supporting: SocialWisdom," The Proceedings of Korean Institute of Information Scientists and Engineers Vol. 39, No. 5, pp.381-394, 2013.
  14. Boon Hee Kim, "Words Recommendation Algorithm for Similarity Connection based on Data Transmutability," The Journal of The Korea Institute of Electronic Communication Sciences, Vol. 8, No. 11, pp. 1719-1724, 2013. DOI: http://dx.doi.org/10.13067/JKIECS.2013.8.11.1719
  15. Yong-Gu Lee, Young-Mee Chung, "An Experimental Study on an Effective Word Sense Disambiguation Model Based on Automatic Sense Tagging Using Dictionary Information," Journal of the Korean Society for Information Management, Vol.24, No. 1, pp. 321-342, 2007. DOI: http://dx.doi.org/10.3743/kosim.2007.24.1.321
  16. Wikipedia, http://en.wikipedia.org/wiki/WordNet
  17. WordNet:A Lexical Database for English. http://wordnet.princeton.edu/
  18. KIBS : Korean Information Base System. http://kibs.kaist.ac.kr
  19. Young-Bum Kim, Yu-seop Kim,"A Question Example Generation System for Multiple Choice Tests by utilizing Concept Similarity in Korean WordNet," Journal of the Korean Information Processing Society, Vol. 15(A), 2008.
  20. Kyeong-Kook Park, Kwang-Mo Lee, Yu-Seop Kim, "WordNet Extension for IT Terminology Using Web Search," The Proceedings of Korean Institute of Information Scientists and Engineers Conference, pp. 189-193, 2007.
  21. In Keun Lee, Dosam Hwang, Younggyun Hahm, Key-Sun CHoi, "Open Korean WordNet(KWN): Dictionary-based Semi-Automatic Development," The 26th Annual Conference on Human & Cognitive Language Technology, 2014.
  22. Mi-Young Cho, Jun-Ho Choi, Pan-Koo Kim, "Design of Conceptual Image Annotation System Using WordNet," The Proceedings of the Korea Multimedia Society Conference. pp. 1081-1086., 2002.
  23. L. Meng, R. Huang, J. Gu, "A Review of Semantic Similarity Measures in WordNet," International Journal of Hybrid Information Technology. Vol. 6, No. 1,, 2013.
  24. T. Simpson, T. Dao, "WordNet-based semantic similarity measurement," 2010, http://www.codeproject.com/Articles/11835.