DOI QR코드

DOI QR Code

Effects of Hexamethylene Diisocyanate as Coupling Agent on Mechanical Properties of Bamboo/PBS Composites

HDI가 대나무/PBS 복합소재의 역학특성에 미치는 영향

  • Lee, Geum Mi (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Oh, Ae Gyeong (Department of Organic Material Science and Engineering, Pusan National University) ;
  • An, Seung Kook (Department of Organic Material Science and Engineering, Pusan National University)
  • 이금미 (부산대학교 유기소재시스템공학과) ;
  • 오애경 (부산대학교 유기소재시스템공학과) ;
  • 안승국 (부산대학교 유기소재시스템공학과)
  • Received : 2016.01.05
  • Accepted : 2016.02.14
  • Published : 2016.02.29

Abstract

The purpose of this study is to improve the interfacial adhesion strength of bamboo/PBS composites by adding HDI (hexamethylene diisocyanate) as a coupling agent. Bamboo/PBS composites with HDI were fabricated by an internal mixer and a hot press machine. In addition, the effects of HDI as a coupling agent and various HDI contents on the mechanical properties of bamboo/PBS composites were investigated. Furthermore, the tensile properties, flexural properties, and Rockwell hardness of bamboo/PBS composites with HDI were evaluated. The obtained results showed that the mechanical properties of bamboo/PBS composites were improved with the addition of HDI. The morphology of fractured surfaces of bamboo/PBS composites was observed with SEM (scanning electron microscope), and the obtained SEM images showed evidence of improved interfacial adhesion between the bamboo fiber and PBS matrix. To analyze the composition change of bamboo/PBS composites, FT-IR (Fourier transform-infra red) spectroscopy was used. The FT-IR spectra of bamboo/PBS composites also showed positive effects of using HDI as a coupling agent. Finally, a comparison of various HDI contents, when all obtained results were combined, showed that bamboo/PBS composites with a HDI content of 1.5% had the most improved mechanical properties.

Keywords

References

  1. C. S. Wu, "Physical Properties and Biodegradability of Maleated-polycaprolactone/starch Composite", Polym. Degrad. Stabil., 2003, 80, 127-134. https://doi.org/10.1016/S0141-3910(02)00393-2
  2. W. J. Liu, L. T. Drzal, A. K. Mohanty, and M. Misra, "Influence of Processing Methods and Fiber Length on Physical Properties of Kenaf Fiber Reinforced Soy Based Biocomposites", Compos. Part B: Eng., 2007, 38, 352-359. https://doi.org/10.1016/j.compositesb.2006.05.003
  3. M. S. Islam, K. L. Pickering, and N. J. Foreman, "Influence of Accelerated Ageing on the Physico-mechanical Properties of Alkali-treated Industrial Hemp Fibre Reinforced Poly(lactic acid) (PLA) Composites", Polym. Degrad. Stabil., 2010, 95, 59-65. https://doi.org/10.1016/j.polymdegradstab.2009.10.010
  4. M. N. Islam, M. R. Rahman, M. M. Haque, and M. M. Huque, "Physico-mechanical Properties of Chemically Treated Coir Reinforced Polypropylene Composites", Compos. Part A: Appl. S., 2010, 41, 192-198. https://doi.org/10.1016/j.compositesa.2009.10.006
  5. E. Bodros, I. Pillin, N. Montrelay, and C. Baley, "Could Biopolymers Reinforced by Randomly Scattered Flax Fibre be Used in Structural Applications?", Compos. Sci. Technol., 2007, 67, 462-470. https://doi.org/10.1016/j.compscitech.2006.08.024
  6. M. Jawaid, H. P. S. A. Khalil, and A. Abu Bakar, "Mechanical Performance of Oil Palm Empty Fruit Bunches/jute Fibres Reinforced Epoxy Hybrid Composites", Mat. Sci. Eng. AStruct., 2010, 527, 7944-7949. https://doi.org/10.1016/j.msea.2010.09.005
  7. M. Okada, "Chemical Syntheses of Biodegradable Polymers", Prog. Polym. Sci., 2002, 27, 87-133. https://doi.org/10.1016/S0079-6700(01)00039-9
  8. L. S. Liu, M. L. Fishman, K. B. Hicks, and C. K. Liu, "Biodegradable Composites from Sugar Beet Pulp and Poly(lactic acid)", J. Agr. Food. Chem., 2005, 53, 9017-9022. https://doi.org/10.1021/jf058083w
  9. S. M. Lee, S. O. Han, D. Cho, W. H. Park, and S. G. Lee, "Influence of Chopped Fibre Length on the Mechanical and Thermal Properties of Silk Fibre-reinforced Poly(butylene succinate) Biocomposites", Polym. Polym. Compos., 2005, 13, 479-488.
  10. A. K. Mohanty, M. A. Khan, and G. Hinrichsen, "Influence of Chemical Surface Modification on the Properties of Biodegradable Jute Fabrics-Polyester Amide Composites", Compos. Part A: Appl. S., 2000, 31, 143-150. https://doi.org/10.1016/S1359-835X(99)00057-3
  11. A. Awal, S. B. Ghosh, and M. Sain, "Thermal Properties and Spectral Characterization of Wood Pulp Reinforced Biocomposite Fibers", J. Therm. Anal. Calorim., 2010, 99, 695-701. https://doi.org/10.1007/s10973-009-0100-x
  12. C. Nyambo, A. K. Mohanty, and M. Misra, "Effect of Maleated Compatibilizer on Performance of PLA/Wheat Straw-Based Green Composites", Macromol. Mater. Eng., 2011, 296, 710-718. https://doi.org/10.1002/mame.201000403
  13. B. A. Acha, M. M. Reboredo, and N. E. Marcovich, "Effect of Coupling Agents on the Thermal and Mechanical Properties of Polypropylene-jute Fabric Composites", Polym. Int., 2006, 55, 1104-1113. https://doi.org/10.1002/pi.2080
  14. M. Farsi, "Wood-plastic Composites: Influence of Wood Flour Chemical Modification on the Mechanical Performance", J. Reinf. Plast. Comp., 2010, 29, 3587-3592. https://doi.org/10.1177/0731684410378779
  15. S. H. Lee and S. Q. Wang, "Biodegradable Polymers/bamboo Fiber Biocomposite with Bio-based Coupling Agent", Compos. Part A: Appl. S., 2006, 37, 80-91. https://doi.org/10.1016/j.compositesa.2005.04.015
  16. L. F. Liu, J. Y. Yu, L. D. Cheng, and X. J. Yang, "Biodegradability of Poly(butylene succinate) (PBS) Composite Reinforced with Jute Fibre", Polym. Degrad. Stabil., 2009, 94, 90-94. https://doi.org/10.1016/j.polymdegradstab.2008.10.013
  17. H. S. Kim, B. H. Lee, S. Lee, H. J. Kim, and J. Dorgan, "Enhanced Interfacial Adhesion, Mechanical, and Thermal Properties of Natural Flour-filled Biodegradable Polymer Biocomposites", J. Therm. Anal. Calorim., 2011, 104, 331-338. https://doi.org/10.1007/s10973-010-1098-9
  18. G. Han, Y. Lei, Q. Wu, Y. Kojima, and S. Suzuki, "Bamboo-Fiber Filled High Density Polyethylene Composites: Effect of Coupling Treatment and Nanoclay", J. Polym. Environ., 2008, 16, 123-130. https://doi.org/10.1007/s10924-008-0094-7
  19. L. Bao, Y. W. Chen, W. H. Zhou, Y. Wu, and Y. L. Huang, "Bamboo Fibers @ Poly(ethylene glycol)-Reinforced Poly (butylene succinate) Biocomposites", J. Appl. Polym. Sci., 2011, 122, 2456-2466. https://doi.org/10.1002/app.34365

Cited by

  1. Properties of grafted wood flour filled poly (lactic acid) composites by reactive extrusion vol.32, pp.4, 2018, https://doi.org/10.1080/01694243.2017.1356050