DOI QR코드

DOI QR Code

Briquetting of Waste Silicon Carbide Obtained from Silicon Wafer Sludges

실리콘 wafer sludge로부터 얻어진 SiC의 단광화 기술

  • Koo, Seong Mo (Department of Nano fusion Technology, Pusan National University) ;
  • Yoon, Su Jong (Department of Nano fusion Technology, Pusan National University) ;
  • Kim, Hye Sung (Department of Nano fusion Technology, Pusan National University)
  • 구성모 (부산대학교 나노과학기술대학 나노융합기술학과) ;
  • 윤수종 (부산대학교 나노과학기술대학 나노융합기술학과) ;
  • 김혜성 (부산대학교 나노과학기술대학 나노융합기술학과)
  • Received : 2015.12.31
  • Accepted : 2016.02.05
  • Published : 2016.02.28

Abstract

Waste SiC powders obtained from silicon wafer sludge have very low density and a narrow particle size distribution of $10-20{\mu}m$. A scarce yield of C and Si is expected when SiC powders are incorporated into the Fe melt without briquetting. Here, the briquetting variables of the SiC powders are studied as a function of the sintering temperature, pressure, and type and contents of the binders to improve the yield. It is experimentally confirmed that Si and C from the sintered briquette can be incorporated effectively into the Fe melt when the waste SiC powders milled for 30 min with 20 wt.% Fe binder are sintered at $1100^{\circ}C$ upon compaction using a pressure of 250 MPa. XRF-WDS analysis shows that an yield of about 90% is obtained when the SiC briquette is kept in the Fe melt at $1650^{\circ}C$ for more than 1 h.

Keywords

References

  1. D. Sarti and R. Einhaus: Sol. Energ. Mat. Sol. C., 72 (2002) 27. https://doi.org/10.1016/S0927-0248(01)00147-7
  2. Y. S. Tsuo, J. M. Gee, P. Menna, D. S. Strebkov, A. Pinov and V. Zadde: Proc. 2nd World Conf. Exhibition on Photovoltaic Solar Energy Conversion (1998).
  3. A. Muller and P. M. Nasch: Proc. Photovoltaic Programme, Swiss Federal Office of Energy (2004).
  4. A. Muhlbauer, V. Diers and A. Walther: J. Cryst. Growth, 108 (1991) 41. https://doi.org/10.1016/0022-0248(91)90352-6
  5. S. Nishijima, Y. Izumi, S. I. Takeda, H. Suemoto, A. Nakahira and S. I. Horie: Trans. Appl. Supercond., 13 (2003) 1596. https://doi.org/10.1109/TASC.2003.812800
  6. J. Shibata, N. Murayama, K. Nagae and K. Ronbunshu: Key Engine. Mater., 32 (2006) 93.
  7. L. Zhang and A. Ciftja: Sol. Energy Mater. Sol. C., 92 (2008) 1450. https://doi.org/10.1016/j.solmat.2008.06.006
  8. J. J. Brennan and K. M. Prewo: J. Mater. Sci., 17 (1982) 2371. https://doi.org/10.1007/BF00543747
  9. D. K. Kim, Z. S. Ahn, I. J. Kim and H. B. Lee: J. Korean Ceram. Soc., 32 (1995) 865 (Korean).