DOI QR코드

DOI QR Code

Synthesis and Electromagnetic Wave Absorbing Property of BaTiO3@Fe Nanofibers with Core-Shell Structure

코어-쉘 구조를 갖는 BaTiO3@Fe 나노섬유의 합성 및 전자파 흡수 특성

  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Jang, Dae-Hwan (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Sung, Ki-Hoon (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Lee, Kyuman (Department of Integrative Engineering, Hoseo Graduate School of Venture) ;
  • Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University)
  • 이영인 (서울과학기술대학교 신소재공학과) ;
  • 장대환 (한양대학교 융합화학공학과) ;
  • 성기훈 (한양대학교 융합화학공학과) ;
  • 이규만 (호서대학교 벤처대학원 융합공학과) ;
  • 좌용호 (한양대학교 융합화학공학과)
  • Received : 2015.12.12
  • Accepted : 2016.02.01
  • Published : 2016.02.28

Abstract

$BaTiO_3$-coated Fe nanofibers are synthesized via a three-step process. ${\alpha}-Fe_2O_3$ nanofibers with an average diameter of approximately 200 nm are first prepared using an electrospinning process followed by a calcination step. The $BaTiO_3$ coating layer on the nanofiber is formed by a sol-gel process, and a thermal reduction process is then applied to the core-shell nanofiber to selectively reduce the ${\alpha}-Fe_2O_3$ to Fe. The thickness of the $BaTiO_3$ shell is controlled by varying the reaction time. To evaluate the electromagnetic (EM) wave-absorbing abilities of the $BaTiO_3@Fe$ nanofiber, epoxy-based composites containing the nanofibers are fabricated. The composites show excellent EM wave absorption properties where the power loss increases to the high frequency region without any degradation. Our results demonstrate that the $BaTiO_3@Fe$ nanofibers obtained in this work are attractive candidates for electromagnetic wave absorption applications.

Keywords

References

  1. A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor and S. A. A. Hamid: J. Appl. Phys., 92 (2002) 876. https://doi.org/10.1063/1.1489092
  2. A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki and S. Ohkoshi: J. Am. Chem. Soc., 131 (2008) 1170.
  3. J. Liu, M. Itoh, M. Terada, T. Horikawa and K. Machida: Appl. Phys. Lett., 91 (2007) 093101. https://doi.org/10.1063/1.2775804
  4. X. G. Liu, B. Li, D. Y. Geng, W. B. Cui, F. Yang, Z. G. Xie, D. J. Kang and Z. D. Zhang: Carbon, 47 (2009) 470. https://doi.org/10.1016/j.carbon.2008.10.028
  5. L. Wang, F. He and Y. Wan: J. Alloys. Compd., 509 (2011) 4726. https://doi.org/10.1016/j.jallcom.2011.01.119
  6. C. L. Zhu, M. L. Zhang, Y. J. Qiao, G. Xiao, F. Zhang and Y. J. Chen: J. Phys. Chem. C, 114 (2010) 16229. https://doi.org/10.1021/jp104445m
  7. Y. J. Chen, P. Gao, C. L. Zhu, R. X. Wang, L. J. Wang, M. S. Cao and X. Y. Fang: Appl. Phys. Lett., 106 (2009) 054303.
  8. Y. J. Chen, F. Zhang, G. Zhao, X. Fang, H. B. Jin, P. Gao, C. L. Zhu, M. S. Cao and G. Xiao: J. Phys. Chem. C, 114 (2010) 9239. https://doi.org/10.1021/jp912178q
  9. Y. Ren, C. Zhu, S. Zhang, C. Li, Y. Chen, P. Gao, P. Yang and Q. Ouyang: Nanoscale, 5 (2013) 12296. https://doi.org/10.1039/c3nr04058e
  10. L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu and F. Li: Nanotechnology, 21 (2010) 095708. https://doi.org/10.1088/0957-4484/21/9/095708
  11. Z. Han, D. Li, H. Wang, X. G. Liu, J. Li, D. Y. Geng and Z. D. Zhang: Appl. Phys. Lett., 95 (2009) 023114. https://doi.org/10.1063/1.3177067
  12. R. Han, X. Han, L. Qiao, T. Wang and F. Li: Mater. Chem. Phys., 128 (2011) 317. https://doi.org/10.1016/j.matchemphys.2011.03.062
  13. H. Song, K. J. Lee, K. H. Kim, S. T. Oh, S. K. Lee and Y. H. Choa: J. Nanosci. Nanotechnol., 10 (2010) 106. https://doi.org/10.1166/jnn.2010.1524