References
- Abbruzzese, C., Mattarocci, S., Pizzuti, L., Mileo, A. M., Visca, P., Antoniani, B., Alessandrini, G., Facciolo, F., Amato, R., D'Antona, L., Rinaldi, M., Felsani, A., Perrotti, N. and Paggi, M. G. (2012) Determination of SGK1 mRNA in non-small cell lung cancer samples underlines high expression in squamous cell carcinomas. J. Exp. Clin. Cancer Res. 31, 4. https://doi.org/10.1186/1756-9966-31-4
- Adrain, C., Strisovsky, K., Zettl, M., Hu, L., Lemberg, M. K. and Freeman, M. (2011) Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 12, 421-427. https://doi.org/10.1038/embor.2011.50
- Adrain, C., Zettl, M., Christova, Y., Taylor, N. and Freeman, M. (2012) Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225-228. https://doi.org/10.1126/science.1214400
- Bassik, M. C., Kampmann, M., Lebbink, R. J., Wang, S., Hein, M. Y., Poser, I., Weibezahn, J., Horlbeck, M. A., Chen, S., Mann, M., Hyman, A. A., Leproust, E. M., McManus, M. T. and Weissman, J. S. (2013) A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152, 909-922. https://doi.org/10.1016/j.cell.2013.01.030
- Bergbold, N. and Lemberg, M. K. (2013) Emerging role of rhomboid family proteins in mammalian biology and disease. Biochim. Biophys. Acta 1828, 2840-2848. https://doi.org/10.1016/j.bbamem.2013.03.025
- Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729-733. https://doi.org/10.1038/385729a0
- Blaydon, D. C., Etheridge, S. L., Risk, J. M., Hennies, H. C., Gay, L. J., Carroll, R., Plagnol, V., McRonald, F. E., Stevens, H. P., Spurr, N. K., Bishop, D. T., Ellis, A., Jankowski, J., Field, J. K., Leigh, I. M., South, A. P. and Kelsell, D. P. (2012) RHBDF2 mutations are associated with tylosis, a familial esophageal cancer syndrome. Am. J. Hum. Genet 90, 340-346. https://doi.org/10.1016/j.ajhg.2011.12.008
- Blobel, C. P. (2005) ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 6, 32-43. https://doi.org/10.1038/nrm1548
- Brooke, M. A., Etheridge, S. L., Kaplan, N., Simpson, C., O'Toole, E. A., Ishida-Yamamoto, A., Marches, O., Getsios, S. and Kelsell, D. P. (2014) iRHOM2-dependent regulation of ADAM17 in cutaneous disease and epidermal barrier function. Hum. Mol. Genet. 23, 4064-4076. https://doi.org/10.1093/hmg/ddu120
- Buckland, J. (2013) Experimental arthritis: Antihistamines as treatments for autoimmune disease? Nat. Rev. Rheumatol. 9, 696.
- Christova, Y., Adrain, C., Bambrough, P., Ibrahim, A. and Freeman, M. (2013) Mammalian iRhoms have distinct physiological functions including an essential role in TACE regulation. EMBO Rep. 14, 884-890. https://doi.org/10.1038/embor.2013.128
- De Jager, P. L., Srivastava, G., Lunnon, K., Burgess, J., Schalkwyk, L. C., Yu, L., Eaton, M. L., Keenan, B. T., Ernst, J., McCabe, C., Tang, A., Raj, T., Replogle, J., Brodeur, W., Gabriel, S., Chai, H. S., Younkin, C., Younkin, S. G., Zou, F., Szyf, M., Epstein, C. B., Schneider, J. A., Bernstein, B. E., Meissner, A., Ertekin-Taner, N., Chibnik, L. B., Kellis, M., Mill, J. and Bennett, D. A. (2014) Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17, 1156-1163. https://doi.org/10.1038/nn.3786
- Etheridge, S. L., Brooke, M. A., Kelsell, D. P. and Blaydon, D. C. (2013) Rhomboid proteins: a role in keratinocyte proliferation and cancer. Cell Tissue Res. 351, 301-307. https://doi.org/10.1007/s00441-012-1542-1
- Finn, R. D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J. E., Gavin, O. L., Gunasekaran, P., Ceric, G., Forslund, K., Holm, L., Sonnhammer, E. L., Eddy, S. R. and Bateman, A. (2010) The Pfam protein families database. Nucleic Acids Res. 38, D211-D222. https://doi.org/10.1093/nar/gkp985
- Fleig, L., Bergbold, N., Sahasrabudhe, P., Geiger, B., Kaltak, L. and Lemberg, M. K. (2012) Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 47, 558-569. https://doi.org/10.1016/j.molcel.2012.06.008
- Foltenyi, K., Greenspan, R. J. and Newport, J. W. (2007) Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 10, 1160-1167. https://doi.org/10.1038/nn1957
- Freeman, M. (1994) The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech. Dev. 48, 25-33. https://doi.org/10.1016/0925-4773(94)90003-5
- Freeman, M. (2014) The rhomboid-like superfamily: molecular mechanisms and biological roles. Annu. Rev. Cell Dev. Biol. 30, 235-254. https://doi.org/10.1146/annurev-cellbio-100913-012944
- Ha, Y., Akiyama, Y. and Xue, Y. (2013) Structure and mechanism of rhomboid protease. J. Biol. Chem. 288, 15430-15436. https://doi.org/10.1074/jbc.R112.422378
- Haglund, K. and Dikic, I. (2012) The role of ubiquitylation in receptor endocytosis and endosomal sorting. J. Cell Sci. 125, 265-275. https://doi.org/10.1242/jcs.091280
- Hall, K. C. and Blobel, C. P. (2012) Interleukin-1 stimulates ADAM17 through a mechanism independent of its cytoplasmic domain or phosphorylation at threonine 735. PLoS One 7, e31600. https://doi.org/10.1371/journal.pone.0031600
- Haxaire, C. and Blobel, C. P. (2014) With blood in the joint - what happens next? Could activation of a pro-inflammatory signalling axis leading to iRhom2/TNFalpha-convertase-dependent release of TNFalpha contribute to haemophilic arthropathy? Haemophilia 20 Suppl 4, 11-14. https://doi.org/10.1111/hae.12416
- Hosur, V., Johnson, K. R., Burzenski, L. M., Stearns, T. M., Maser, R. S. and Shultz, L. D. (2014) Rhbdf2 mutations increase its protein stability and drive EGFR hyperactivation through enhanced secretion of amphiregulin. Proc. Natl. Acad.Sci. U.S.A. 111, E2200-E2209. https://doi.org/10.1073/pnas.1323908111
- Issuree, P. D., Maretzky, T., McIlwain, D. R., Monette, S., Qing, X., Lang, P. A., Swendeman, S. L., Park-Min, K. H., Binder, N., Kalliolias, G. D., Yarilina, A., Horiuchi, K., Ivashkiv, L. B., Mak, T. W., Salmon, J. E. and Blobel, C. P. (2013) iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. J. Clin. Invest. 123, 928-932.
- Koonin, E. V., Makarova, K. S., Rogozin, I. B., Davidovic, L., Letellier, M. C. and Pellegrini, L. (2003) The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol. 4, R19. https://doi.org/10.1186/gb-2003-4-3-r19
- Lemberg, M. K. (2013) Sampling the membrane: function of rhomboidfamily proteins. Trends Cell Biol. 23, 210-217. https://doi.org/10.1016/j.tcb.2013.01.002
- Lemberg, M. K. and Freeman, M. (2007) Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 17, 1634-1646. https://doi.org/10.1101/gr.6425307
- Lemberg, M. K., Menendez, J., Misik, A., Garcia, M., Koth, C. M. and Freeman, M. (2005) Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 24, 464-472. https://doi.org/10.1038/sj.emboj.7600537
- Li, X., Maretzky, T., Weskamp, G., Monette, S., Qing, X., Issuree, P. D., Crawford, H. C., McIlwain, D. R., Mak, T. W., Salmon, J. E. and Blobel, C. P. (2015) iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc. Natl. Acad. Sci. U.S.A. 112, 6080-6085. https://doi.org/10.1073/pnas.1505649112
- Liao, H. J. and Carpenter, G. (2012) Regulated intramembrane cleavage of the EGF receptor. Traffic 13, 1106-1112. https://doi.org/10.1111/j.1600-0854.2012.01371.x
- Lichtenthaler, S. F. (2013) iRHOM2 takes control of rheumatoid arthritis. J. Clin. Invest. 123, 560-562.
- Lisi, S., D'Amore, M. and Sisto, M. (2014) ADAM17 at the interface between inflammation and autoimmunity. Immunol. Lett. 162, 159-169. https://doi.org/10.1016/j.imlet.2014.08.008
- Lui, V. W., Thomas, S. M., Zhang, Q., Wentzel, A. L., Siegfried, J. M., Li, J. Y. and Grandis, J. R. (2003) Mitogenic effects of gastrin-releasing peptide in head and neck squamous cancer cells are mediated by activation of the epidermal growth factor receptor. Oncogene 22, 6183-6193. https://doi.org/10.1038/sj.onc.1206720
- Lunnon, K., Smith, R., Hannon, E., De Jager, P. L., Srivastava, G., Volta, M., Troakes, C., Al-Sarraj, S., Burrage, J., Macdonald, R., Condliffe, D., Harries, L. W., Katsel, P., Haroutunian, V., Kaminsky, Z., Joachim, C., Powell, J., Lovestone, S., Bennett, D. A., Schalkwyk, L. C. and Mill, J. (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat. Neurosci. 17, 1164-1170. https://doi.org/10.1038/nn.3782
- Maretzky, T., McIlwain, D. R., Issuree, P. D., Li, X., Malapeira, J., Amin, S., Lang, P. A., Mak, T. W. and Blobel, C. P. (2013) iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc. Natl. Acad. Sci. U.S.A. 110, 11433-11438. https://doi.org/10.1073/pnas.1302553110
- McIlwain, D. R., Lang, P. A., Maretzky, T., Hamada, K., Ohishi, K., Maney, S. K., Berger, T., Murthy, A., Duncan, G., Xu, H. C., Lang, K. S., Haussinger, D., Wakeham, A., Itie-Youten, A., Khokha, R., Ohashi, P. S., Blobel, C. P. and Mak, T. W. (2012) iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229-232. https://doi.org/10.1126/science.1214448
- Nakagawa, T., Guichard, A., Castro, C. P., Xiao, Y., Rizen, M., Zhang, H. Z., Hu, D., Bang, A., Helms, J., Bier, E. and Derynck, R. (2005) Characterization of a human rhomboid homolog, p100hRho/RHBDF1, which interacts with TGF-alpha family ligands. Dev. Dyn. 233, 1315-1331. https://doi.org/10.1002/dvdy.20450
- Pascall, J. C. and Brown, K. D. (1998) Characterization of a mammalian cDNA encoding a protein with high sequence similarity to the Drosophila regulatory protein Rhomboid. FEBS Lett. 429, 337-340. https://doi.org/10.1016/S0014-5793(98)00622-X
- Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlosky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. J. and Black, R. A. (1998) An essential role for ectodomain shedding in mammalian development. Science 282, 1281-1284. https://doi.org/10.1126/science.282.5392.1281
- Puente, X. S., Sanchez, L. M., Overall, C. M. and Lopez-Otin, C. (2003) Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544-558. https://doi.org/10.1038/nrg1111
- Rugg, E. L., Common, J. E., Wilgoss, A., Stevens, H. P., Buchan, J., Leigh, I. M. and Kelsell, D. P. (2002) Diagnosis and confirmation of epidermolytic palmoplantar keratoderma by the identification of mutations in keratin 9 using denaturing high-performance liquid chromatography. Br. J. Dermatol. 146, 952-957. https://doi.org/10.1046/j.1365-2133.2002.04764.x
- Rutledge, B. J., Zhang, K., Bier, E., Jan, Y. N. and Perrimon, N. (1992) The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev. 6, 1503-1517. https://doi.org/10.1101/gad.6.8.1503
- Saarinen, S., Vahteristo, P., Lehtonen, R., Aittomaki, K., Launonen, V., Kiviluoto, T. and Aaltonen, L. A. (2012) Analysis of a Finnish family confirms RHBDF2 mutations as the underlying factor in tylosis with esophageal cancer. Fam. Cancer 11, 525-528. https://doi.org/10.1007/s10689-012-9532-8
- Sahin, U. and Blobel, C. P. (2007) Ectodomain shedding of the EGFreceptor ligand epigen is mediated by ADAM17. FEBS Lett. 581, 41-44. https://doi.org/10.1016/j.febslet.2006.11.074
- Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P. and Blobel, C. P. (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769-779. https://doi.org/10.1083/jcb.200307137
- Schweitzer, R., Shaharabany, M., Seger, R. and Shilo, B. Z. (1995) Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 9, 1518-1529. https://doi.org/10.1101/gad.9.12.1518
- Siggs, O. M., Grieve, A., Xu, H., Bambrough, P., Christova, Y. and Freeman, M. (2014) Genetic interaction implicates iRhom2 in the regulation of EGF receptor signalling in mice. Biol. Open 3, 1151-1157. https://doi.org/10.1242/bio.201410116
-
Siggs, O. M., Xiao, N., Wang, Y., Shi, H., Tomisato, W., Li, X., Xia, Y. and Beutler, B. (2012) iRhom2 is required for the secretion of mouse
$TNF{\alpha}$ . Blood 119, 5769-5771. https://doi.org/10.1182/blood-2012-03-417949 - Sturtevant, M. A., Roark, M. and Bier, E. (1993) The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes Dev. 7, 961-973. https://doi.org/10.1101/gad.7.6.961
- Urban, S. and Dickey, S. W. (2011) The rhomboid protease family: a decade of progress on function and mechanism. Genome Biol. 12, 231. https://doi.org/10.1186/gb-2011-12-10-231
- Urban, S., Lee, J. R. and Freeman, M. (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173-182. https://doi.org/10.1016/S0092-8674(01)00525-6
- Urban, S., Schlieper, D. and Freeman, M. (2002) Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507-1512. https://doi.org/10.1016/S0960-9822(02)01092-8
- Urban, S. and Wolfe, M. S. (2005) Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. U.S.A. 102, 1883-1888. https://doi.org/10.1073/pnas.0408306102
- Wasserman, J. D., Urban, S. and Freeman, M. (2000) A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signaling. Genes Dev. 14, 1651-1663.
- Wojnarowicz, P. M., Provencher, D. M., Mes-Masson, A. M. and Tonin, P. N. (2012) Chromosome 17q25 genes, RHBDF2 and CYGB, in ovarian cancer. Int. J. Oncol. 40, 1865-1880.
- Yan, Z., Zou, H., Tian, F., Grandis, J. R., Mixson, A. J., Lu, P. Y. and Li, L. Y. (2008) Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Mol. Cancer Ther. 7, 1355-1364. https://doi.org/10.1158/1535-7163.MCT-08-0104
- Zettl, M., Adrain, C., Strisovsky, K., Lastun, V. and Freeman, M. (2011) Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 145, 79-91. https://doi.org/10.1016/j.cell.2011.02.047
- Zou, H., Thomas, S. M., Yan, Z. W., Grandis, J. R., Vogt, A. and Li, L. Y. (2009) Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J. 23, 425-432. https://doi.org/10.1096/fj.08-112771
Cited by
- Lnc2Catlas: an atlas of long noncoding RNAs associated with risk of cancers vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-20232-4
- Knockout Mouse vol.26, pp.3, 2018, https://doi.org/10.4062/biomolther.2017.103
- Novel functions of inactive rhomboid proteins in immunity and disease vol.106, pp.4, 2016, https://doi.org/10.1002/jlb.3vmr0219-069r