DOI QR코드

DOI QR Code

iRhoms; Its Functions and Essential Roles

  • Lee, Min-Young (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Nam, Ki-Hoan (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Kyung-Chul (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2015.09.14
  • Accepted : 2015.11.06
  • Published : 2016.03.01

Abstract

In Drosophila, rhomboid proteases are active cardinal regulators of epidermal growth factor receptor (EGFR) signaling pathway. iRhom1 and iRhom2, which are inactive homologs of rhomboid intramembrane serine proteases, are lacking essential catalytic residues. These are necessary for maturation and trafficking of tumor necrosis factor-alpha (TNF-${\alpha}$) converting enzyme (TACE) from endoplasmic reticulum (ER) to plasma membrane through Golgi, and associated with the fates of various ligands for EGFR. Recent studies have clarified that the activation or downregulation of EGFR signaling pathways by alteration of iRhoms are connected to several human diseases including tylosis with esophageal cancer (TOC) which is the autosomal dominant syndrom, breast cancer, and Alzheimer's disease. Thus, this review focuses on our understanding of iRhoms and the involved mechanisms in the cellular processes.

Keywords

References

  1. Abbruzzese, C., Mattarocci, S., Pizzuti, L., Mileo, A. M., Visca, P., Antoniani, B., Alessandrini, G., Facciolo, F., Amato, R., D'Antona, L., Rinaldi, M., Felsani, A., Perrotti, N. and Paggi, M. G. (2012) Determination of SGK1 mRNA in non-small cell lung cancer samples underlines high expression in squamous cell carcinomas. J. Exp. Clin. Cancer Res. 31, 4. https://doi.org/10.1186/1756-9966-31-4
  2. Adrain, C., Strisovsky, K., Zettl, M., Hu, L., Lemberg, M. K. and Freeman, M. (2011) Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 12, 421-427. https://doi.org/10.1038/embor.2011.50
  3. Adrain, C., Zettl, M., Christova, Y., Taylor, N. and Freeman, M. (2012) Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225-228. https://doi.org/10.1126/science.1214400
  4. Bassik, M. C., Kampmann, M., Lebbink, R. J., Wang, S., Hein, M. Y., Poser, I., Weibezahn, J., Horlbeck, M. A., Chen, S., Mann, M., Hyman, A. A., Leproust, E. M., McManus, M. T. and Weissman, J. S. (2013) A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152, 909-922. https://doi.org/10.1016/j.cell.2013.01.030
  5. Bergbold, N. and Lemberg, M. K. (2013) Emerging role of rhomboid family proteins in mammalian biology and disease. Biochim. Biophys. Acta 1828, 2840-2848. https://doi.org/10.1016/j.bbamem.2013.03.025
  6. Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729-733. https://doi.org/10.1038/385729a0
  7. Blaydon, D. C., Etheridge, S. L., Risk, J. M., Hennies, H. C., Gay, L. J., Carroll, R., Plagnol, V., McRonald, F. E., Stevens, H. P., Spurr, N. K., Bishop, D. T., Ellis, A., Jankowski, J., Field, J. K., Leigh, I. M., South, A. P. and Kelsell, D. P. (2012) RHBDF2 mutations are associated with tylosis, a familial esophageal cancer syndrome. Am. J. Hum. Genet 90, 340-346. https://doi.org/10.1016/j.ajhg.2011.12.008
  8. Blobel, C. P. (2005) ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 6, 32-43. https://doi.org/10.1038/nrm1548
  9. Brooke, M. A., Etheridge, S. L., Kaplan, N., Simpson, C., O'Toole, E. A., Ishida-Yamamoto, A., Marches, O., Getsios, S. and Kelsell, D. P. (2014) iRHOM2-dependent regulation of ADAM17 in cutaneous disease and epidermal barrier function. Hum. Mol. Genet. 23, 4064-4076. https://doi.org/10.1093/hmg/ddu120
  10. Buckland, J. (2013) Experimental arthritis: Antihistamines as treatments for autoimmune disease? Nat. Rev. Rheumatol. 9, 696.
  11. Christova, Y., Adrain, C., Bambrough, P., Ibrahim, A. and Freeman, M. (2013) Mammalian iRhoms have distinct physiological functions including an essential role in TACE regulation. EMBO Rep. 14, 884-890. https://doi.org/10.1038/embor.2013.128
  12. De Jager, P. L., Srivastava, G., Lunnon, K., Burgess, J., Schalkwyk, L. C., Yu, L., Eaton, M. L., Keenan, B. T., Ernst, J., McCabe, C., Tang, A., Raj, T., Replogle, J., Brodeur, W., Gabriel, S., Chai, H. S., Younkin, C., Younkin, S. G., Zou, F., Szyf, M., Epstein, C. B., Schneider, J. A., Bernstein, B. E., Meissner, A., Ertekin-Taner, N., Chibnik, L. B., Kellis, M., Mill, J. and Bennett, D. A. (2014) Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17, 1156-1163. https://doi.org/10.1038/nn.3786
  13. Etheridge, S. L., Brooke, M. A., Kelsell, D. P. and Blaydon, D. C. (2013) Rhomboid proteins: a role in keratinocyte proliferation and cancer. Cell Tissue Res. 351, 301-307. https://doi.org/10.1007/s00441-012-1542-1
  14. Finn, R. D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J. E., Gavin, O. L., Gunasekaran, P., Ceric, G., Forslund, K., Holm, L., Sonnhammer, E. L., Eddy, S. R. and Bateman, A. (2010) The Pfam protein families database. Nucleic Acids Res. 38, D211-D222. https://doi.org/10.1093/nar/gkp985
  15. Fleig, L., Bergbold, N., Sahasrabudhe, P., Geiger, B., Kaltak, L. and Lemberg, M. K. (2012) Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 47, 558-569. https://doi.org/10.1016/j.molcel.2012.06.008
  16. Foltenyi, K., Greenspan, R. J. and Newport, J. W. (2007) Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 10, 1160-1167. https://doi.org/10.1038/nn1957
  17. Freeman, M. (1994) The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech. Dev. 48, 25-33. https://doi.org/10.1016/0925-4773(94)90003-5
  18. Freeman, M. (2014) The rhomboid-like superfamily: molecular mechanisms and biological roles. Annu. Rev. Cell Dev. Biol. 30, 235-254. https://doi.org/10.1146/annurev-cellbio-100913-012944
  19. Ha, Y., Akiyama, Y. and Xue, Y. (2013) Structure and mechanism of rhomboid protease. J. Biol. Chem. 288, 15430-15436. https://doi.org/10.1074/jbc.R112.422378
  20. Haglund, K. and Dikic, I. (2012) The role of ubiquitylation in receptor endocytosis and endosomal sorting. J. Cell Sci. 125, 265-275. https://doi.org/10.1242/jcs.091280
  21. Hall, K. C. and Blobel, C. P. (2012) Interleukin-1 stimulates ADAM17 through a mechanism independent of its cytoplasmic domain or phosphorylation at threonine 735. PLoS One 7, e31600. https://doi.org/10.1371/journal.pone.0031600
  22. Haxaire, C. and Blobel, C. P. (2014) With blood in the joint - what happens next? Could activation of a pro-inflammatory signalling axis leading to iRhom2/TNFalpha-convertase-dependent release of TNFalpha contribute to haemophilic arthropathy? Haemophilia 20 Suppl 4, 11-14. https://doi.org/10.1111/hae.12416
  23. Hosur, V., Johnson, K. R., Burzenski, L. M., Stearns, T. M., Maser, R. S. and Shultz, L. D. (2014) Rhbdf2 mutations increase its protein stability and drive EGFR hyperactivation through enhanced secretion of amphiregulin. Proc. Natl. Acad.Sci. U.S.A. 111, E2200-E2209. https://doi.org/10.1073/pnas.1323908111
  24. Issuree, P. D., Maretzky, T., McIlwain, D. R., Monette, S., Qing, X., Lang, P. A., Swendeman, S. L., Park-Min, K. H., Binder, N., Kalliolias, G. D., Yarilina, A., Horiuchi, K., Ivashkiv, L. B., Mak, T. W., Salmon, J. E. and Blobel, C. P. (2013) iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. J. Clin. Invest. 123, 928-932.
  25. Koonin, E. V., Makarova, K. S., Rogozin, I. B., Davidovic, L., Letellier, M. C. and Pellegrini, L. (2003) The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol. 4, R19. https://doi.org/10.1186/gb-2003-4-3-r19
  26. Lemberg, M. K. (2013) Sampling the membrane: function of rhomboidfamily proteins. Trends Cell Biol. 23, 210-217. https://doi.org/10.1016/j.tcb.2013.01.002
  27. Lemberg, M. K. and Freeman, M. (2007) Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 17, 1634-1646. https://doi.org/10.1101/gr.6425307
  28. Lemberg, M. K., Menendez, J., Misik, A., Garcia, M., Koth, C. M. and Freeman, M. (2005) Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 24, 464-472. https://doi.org/10.1038/sj.emboj.7600537
  29. Li, X., Maretzky, T., Weskamp, G., Monette, S., Qing, X., Issuree, P. D., Crawford, H. C., McIlwain, D. R., Mak, T. W., Salmon, J. E. and Blobel, C. P. (2015) iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc. Natl. Acad. Sci. U.S.A. 112, 6080-6085. https://doi.org/10.1073/pnas.1505649112
  30. Liao, H. J. and Carpenter, G. (2012) Regulated intramembrane cleavage of the EGF receptor. Traffic 13, 1106-1112. https://doi.org/10.1111/j.1600-0854.2012.01371.x
  31. Lichtenthaler, S. F. (2013) iRHOM2 takes control of rheumatoid arthritis. J. Clin. Invest. 123, 560-562.
  32. Lisi, S., D'Amore, M. and Sisto, M. (2014) ADAM17 at the interface between inflammation and autoimmunity. Immunol. Lett. 162, 159-169. https://doi.org/10.1016/j.imlet.2014.08.008
  33. Lui, V. W., Thomas, S. M., Zhang, Q., Wentzel, A. L., Siegfried, J. M., Li, J. Y. and Grandis, J. R. (2003) Mitogenic effects of gastrin-releasing peptide in head and neck squamous cancer cells are mediated by activation of the epidermal growth factor receptor. Oncogene 22, 6183-6193. https://doi.org/10.1038/sj.onc.1206720
  34. Lunnon, K., Smith, R., Hannon, E., De Jager, P. L., Srivastava, G., Volta, M., Troakes, C., Al-Sarraj, S., Burrage, J., Macdonald, R., Condliffe, D., Harries, L. W., Katsel, P., Haroutunian, V., Kaminsky, Z., Joachim, C., Powell, J., Lovestone, S., Bennett, D. A., Schalkwyk, L. C. and Mill, J. (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat. Neurosci. 17, 1164-1170. https://doi.org/10.1038/nn.3782
  35. Maretzky, T., McIlwain, D. R., Issuree, P. D., Li, X., Malapeira, J., Amin, S., Lang, P. A., Mak, T. W. and Blobel, C. P. (2013) iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc. Natl. Acad. Sci. U.S.A. 110, 11433-11438. https://doi.org/10.1073/pnas.1302553110
  36. McIlwain, D. R., Lang, P. A., Maretzky, T., Hamada, K., Ohishi, K., Maney, S. K., Berger, T., Murthy, A., Duncan, G., Xu, H. C., Lang, K. S., Haussinger, D., Wakeham, A., Itie-Youten, A., Khokha, R., Ohashi, P. S., Blobel, C. P. and Mak, T. W. (2012) iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229-232. https://doi.org/10.1126/science.1214448
  37. Nakagawa, T., Guichard, A., Castro, C. P., Xiao, Y., Rizen, M., Zhang, H. Z., Hu, D., Bang, A., Helms, J., Bier, E. and Derynck, R. (2005) Characterization of a human rhomboid homolog, p100hRho/RHBDF1, which interacts with TGF-alpha family ligands. Dev. Dyn. 233, 1315-1331. https://doi.org/10.1002/dvdy.20450
  38. Pascall, J. C. and Brown, K. D. (1998) Characterization of a mammalian cDNA encoding a protein with high sequence similarity to the Drosophila regulatory protein Rhomboid. FEBS Lett. 429, 337-340. https://doi.org/10.1016/S0014-5793(98)00622-X
  39. Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlosky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. J. and Black, R. A. (1998) An essential role for ectodomain shedding in mammalian development. Science 282, 1281-1284. https://doi.org/10.1126/science.282.5392.1281
  40. Puente, X. S., Sanchez, L. M., Overall, C. M. and Lopez-Otin, C. (2003) Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544-558. https://doi.org/10.1038/nrg1111
  41. Rugg, E. L., Common, J. E., Wilgoss, A., Stevens, H. P., Buchan, J., Leigh, I. M. and Kelsell, D. P. (2002) Diagnosis and confirmation of epidermolytic palmoplantar keratoderma by the identification of mutations in keratin 9 using denaturing high-performance liquid chromatography. Br. J. Dermatol. 146, 952-957. https://doi.org/10.1046/j.1365-2133.2002.04764.x
  42. Rutledge, B. J., Zhang, K., Bier, E., Jan, Y. N. and Perrimon, N. (1992) The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev. 6, 1503-1517. https://doi.org/10.1101/gad.6.8.1503
  43. Saarinen, S., Vahteristo, P., Lehtonen, R., Aittomaki, K., Launonen, V., Kiviluoto, T. and Aaltonen, L. A. (2012) Analysis of a Finnish family confirms RHBDF2 mutations as the underlying factor in tylosis with esophageal cancer. Fam. Cancer 11, 525-528. https://doi.org/10.1007/s10689-012-9532-8
  44. Sahin, U. and Blobel, C. P. (2007) Ectodomain shedding of the EGFreceptor ligand epigen is mediated by ADAM17. FEBS Lett. 581, 41-44. https://doi.org/10.1016/j.febslet.2006.11.074
  45. Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P. and Blobel, C. P. (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769-779. https://doi.org/10.1083/jcb.200307137
  46. Schweitzer, R., Shaharabany, M., Seger, R. and Shilo, B. Z. (1995) Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 9, 1518-1529. https://doi.org/10.1101/gad.9.12.1518
  47. Siggs, O. M., Grieve, A., Xu, H., Bambrough, P., Christova, Y. and Freeman, M. (2014) Genetic interaction implicates iRhom2 in the regulation of EGF receptor signalling in mice. Biol. Open 3, 1151-1157. https://doi.org/10.1242/bio.201410116
  48. Siggs, O. M., Xiao, N., Wang, Y., Shi, H., Tomisato, W., Li, X., Xia, Y. and Beutler, B. (2012) iRhom2 is required for the secretion of mouse $TNF{\alpha}$. Blood 119, 5769-5771. https://doi.org/10.1182/blood-2012-03-417949
  49. Sturtevant, M. A., Roark, M. and Bier, E. (1993) The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes Dev. 7, 961-973. https://doi.org/10.1101/gad.7.6.961
  50. Urban, S. and Dickey, S. W. (2011) The rhomboid protease family: a decade of progress on function and mechanism. Genome Biol. 12, 231. https://doi.org/10.1186/gb-2011-12-10-231
  51. Urban, S., Lee, J. R. and Freeman, M. (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173-182. https://doi.org/10.1016/S0092-8674(01)00525-6
  52. Urban, S., Schlieper, D. and Freeman, M. (2002) Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507-1512. https://doi.org/10.1016/S0960-9822(02)01092-8
  53. Urban, S. and Wolfe, M. S. (2005) Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. U.S.A. 102, 1883-1888. https://doi.org/10.1073/pnas.0408306102
  54. Wasserman, J. D., Urban, S. and Freeman, M. (2000) A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signaling. Genes Dev. 14, 1651-1663.
  55. Wojnarowicz, P. M., Provencher, D. M., Mes-Masson, A. M. and Tonin, P. N. (2012) Chromosome 17q25 genes, RHBDF2 and CYGB, in ovarian cancer. Int. J. Oncol. 40, 1865-1880.
  56. Yan, Z., Zou, H., Tian, F., Grandis, J. R., Mixson, A. J., Lu, P. Y. and Li, L. Y. (2008) Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Mol. Cancer Ther. 7, 1355-1364. https://doi.org/10.1158/1535-7163.MCT-08-0104
  57. Zettl, M., Adrain, C., Strisovsky, K., Lastun, V. and Freeman, M. (2011) Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 145, 79-91. https://doi.org/10.1016/j.cell.2011.02.047
  58. Zou, H., Thomas, S. M., Yan, Z. W., Grandis, J. R., Vogt, A. and Li, L. Y. (2009) Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J. 23, 425-432. https://doi.org/10.1096/fj.08-112771

Cited by

  1. Lnc2Catlas: an atlas of long noncoding RNAs associated with risk of cancers vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-20232-4
  2. Knockout Mouse vol.26, pp.3, 2018, https://doi.org/10.4062/biomolther.2017.103
  3. Novel functions of inactive rhomboid proteins in immunity and disease vol.106, pp.4, 2016, https://doi.org/10.1002/jlb.3vmr0219-069r