DOI QR코드

DOI QR Code

Improvement of Sealing Property of Electrostatic Chuck by Applying Polysilazane Sealant

폴리실라잔계 실란트를 이용한 정전척 실링특성 향상 연구

  • 최재영 (단국대학교 에너지공학과) ;
  • 박현수 (단국대학교 에너지공학과) ;
  • 손민규 (와이엠씨 (주) 기술연구소) ;
  • 정창오 (와이엠씨 (주) 기술연구소) ;
  • 김우병 (단국대학교 에너지공학과)
  • Received : 2016.10.24
  • Accepted : 2016.11.21
  • Published : 2016.12.31

Abstract

We have analyzed chemical properties of polysiloxane and polysilazane films, respectively, as sealing materials for electrostatic chuck (ESC) and have investigated the possibility of polysilazane as an alternative sealant to polysiloxane. It has been revealed that Si-O with organic bonding ($Si-CH_3$) existed in polysiloxane films compared to only pure Si-O bonding in polysilazane films. The sealing property of polysilazane has been found outstanding even in a short time of application. In the polysiloxane films containing $H_2O$, pin holes have been found possibly due to $CO_2$ gas evolution, and low adhesion with Si substrate has been observed after heat stress test in connection with the existence of organic bonding. After acid resistance test in 0.5 vol.% HF, 68 wt.% $HNO_3$, and 37 wt.% HCl solution, polyilazane films have shown a longer survival times. Compared to the conventional polysiloxane sealant, polysilazane is expected as a new sealing material because of good thermal and chemical stability.

Keywords

References

  1. T. Watanabe, T. Kitabayashi, Effect of additives on the electrostatic force of alumina electrostatic chucks, J. Ceramic Soc. Jpn., 100(1) (1992) 1-6. https://doi.org/10.2109/jcersj.100.1
  2. L. D. Hartsough, Electrostatic Wafer Holding, Solid state Tech. 36(1) (1993) 87-91.
  3. S. A. Khomyakov, Attraction and Accuracy Characteristics of Electrostatic Chucks, Machines and Tooling, 50 (1979) 22-24.
  4. The Institute of Electrostatics Japan, Hand Book of Electrostatics (1981) 672-675.
  5. J. Yoo, J. S. Choi, S. J. Hong, T. H. Kim, S. J. Lee, Proceedings of International Conference on Electrical Machines and Systems, Seoul (2007).
  6. C. Balaskrishnan, Johnsen-Rahbek Effect with an Electronic Semi-Conductor, Br. J. Appl. Phys., 1(8) (1950) 211-213. https://doi.org/10.1088/0508-3443/1/8/304
  7. R. Atkinson, A Simple Theory of the Johnsen-Rahbek Effect, Br. J. Appl. Phys., 2(3) (1969) 325.
  8. T. Watanabe, T. Kitabayashi, C. Nakayama, Relationship Between Electrical Resistivity and Electrostatic Force of Alumina Electrostatic Chuck, Jpn. J. Appl. Phys., 32(2R) (1993) 864. https://doi.org/10.1143/JJAP.32.864
  9. V. P. Singh, A. Sil, R. Jayaganthan, A study on sliding and erosive wear behavior of atmospheric plasma sprayed conventional and nanostructured alumina coatings, materials & Design, 32(2) (2011) 584-591. https://doi.org/10.1016/j.matdes.2010.08.019
  10. X. Q. Cao, R. Vassen, S. Schwartz, W. Jungen, F. Tietz, D. Stoever, Spray-drying of ceramics for plasma-spray coating, J. Eur. Ceram. Soc., 20(14) (2000) 2433-2439. https://doi.org/10.1016/S0955-2219(00)00112-6
  11. G. I. Shim, T. Yamauchi, H. Sugai, Plasma effects on electrostatic chuck characteristics on capacitive RF discharge, Plasma and Fusion Research, 2 (2007) 044-044. https://doi.org/10.1585/pfr.2.044
  12. M. Nakasuji, H. Shimizn, Low voltage and high speed operating electrostatic wafer chuck, J. Vac. Sci. Technol. A, 10(6) (1992) 3573-3578. https://doi.org/10.1116/1.577786
  13. J. H. Kim, S. H. Yoon, H. T. Na, C. H. Lee, Microstructure and tribological properties along with chemical composition and size of initial powder in Fe-based BMG coating through APS, J. Korean Inst. Surf. Eng., 41(5) (2008) 220-225. https://doi.org/10.5695/JKISE.2008.41.5.220
  14. K. Yatsuzuka, F. Hatakeyama, K. Asano, S. Aonuma, Fundamental characteristics of electrostatic wafer chuck with insulating sealant, IEEE Trans. Ind. Appl., 36(2) (2000) 510-516. https://doi.org/10.1109/28.833768
  15. T. Gumula, C. Paluszkiewicz, M. Blazewicz, Structural characterization of polysiloxane-derived phases produced during heat treatment, J. Mol. Struct., 704(1) (2004) 259-262. https://doi.org/10.1016/j.molstruc.2003.12.064
  16. F. Bauer, U. Decker, A. Dierdorf, H. Ernst, R. Heller, H. Liebe, R. Mehnert, Preparation of moisture curable polysilazane coatings: Part I. Elucidation of low temperature curing kinetics by FT-IR spectroscopy, Pro. Org., 53(3) (2005) 183-190. https://doi.org/10.1016/j.porgcoat.2005.02.006
  17. O. Funayama, Y. Tashiro, A. Kamo, M. Okumura, T. Isoda, Conversion mechanism of perhydropolysilazane into silicon nitride-based ceramics, J. Mater. Sci. 29(18) (1994) 4883-4888. https://doi.org/10.1007/BF00356538
  18. A. Agarwal, T. McKechnie, S. Seal, Net shape nanostructured aluminum oxide structures fabricated by plasma spray forming, J. Therm. Spray Technol., 12(3) (2003) 350-359. https://doi.org/10.1361/105996303770348221