DOI QR코드

DOI QR Code

Formation of Metal Electrode on Si3N4 Substrate by Electrochemical Technique

전기화학 공정을 이용한 질화규소 기판 상의 금속 전극 형성에 관한 연구

  • Shin, Sung-Chul (Surface Technology Division Korea, Institute of Materials Science) ;
  • Kim, Ji-Won (Surface Technology Division Korea, Institute of Materials Science) ;
  • Kwon, Se-Hun (Dept. of Materials Science & Engineering, Pusan National University) ;
  • Lim, Jae-Hong (Surface Technology Division Korea, Institute of Materials Science)
  • 신성철 (한국기계연구원 부설 재료연구소(KIMS) 표면기술본부) ;
  • 김지원 (한국기계연구원 부설 재료연구소(KIMS) 표면기술본부) ;
  • 권세훈 (부산대학교 재료공학과) ;
  • 임재홍 (한국기계연구원 부설 재료연구소(KIMS) 표면기술본부)
  • Received : 2016.11.04
  • Accepted : 2016.12.02
  • Published : 2016.12.31

Abstract

There is a close relationship between the performance and the heat generation of the electronic device. Heat generation causes a significant degradation of the durability and/or efficiency of the device. It is necessary to have an effective method to release the generated heat. Based on demands of the printed circuit board (PCB) manufacturing, it is necessary to develop a robust and reliable plating technique for substrates with high thermal conductivity, such as alumina ($Al_2O_3$), aluminium nitride (AlN), and silicon nitride ($Si_3N_4$). In this study, the plating of metal layers on an insulating silicon nitride ($Si_3N_4$) ceramic substrate was developed. We formed a Pd-$TiO_2$ adhesion layer and used APTES(3-Aminopropyltriethoxysilane) to form OH groups on the surface and adhere the metal layer on the insulating $Si_3N_4$ substrate. We used an electroless Ni plating without sensitization/activation process, as Pd particles were nucleated on the $TiO_2$ layer. The electrical resistivity of Ni and Cu layers is $7.27{\times}10^{-5}$ and $1.32{\times}10^{-6}ohm-cm$ by 4 point prober, respectively. The adhesion strength is 2.506 N by scratch test.

Keywords

References

  1. W. Devin, Method of Forming Conductive Traces on Insulated Substrate (2014).
  2. Y. J. Heo, H. T. Kim, K. J. Kim, S. Nahm, Y. J. Yoon, and J. Kim, Enhanced heat transfer by room temperature deposition of AlN film on aluminum for a light emitting diode package, Appl. Therm. Eng. 50 (2013) 799-804. https://doi.org/10.1016/j.applthermaleng.2012.07.024
  3. A. Miller, L. Yu, J. Blickensderfer, and R. Akolkar, Electrochemical copper metallization of glass substrates mediated by solution-phase deposition of adhesion-promoting layers, J. Electrochem. Soc. 162 (2015) D630-D634. https://doi.org/10.1149/2.1071514jes
  4. P. Walker, Silane and other adhesion promoters in adhesive technology, Handbook of Adhesive Technology 2 (2003) 205-221.
  5. J. Kudr, S. Skalickova, L. Nejdl, A. Moulick, B. Ruttkay-Nedecky, V. Adam, and R. Kizek, Fabrication of solid-state nanopores and its perspectives, Electrophoresis 36 (2015) 2367-2379. https://doi.org/10.1002/elps.201400612
  6. J. Sittikun, Y. Boonyongmaneerat, P. Weerachawanasak, P. Praserthdam, and J. Panpranot, Pd/$TiO_2$ catalysts prepared by electroless deposition with and without $SnCl_2$ sensitization for the liquid-phase hydrogenation of 3-hexyn-1-ol, Reaction Kinetics, Mechanisms and Catalysis 111 (2014) 123-135. https://doi.org/10.1007/s11144-013-0634-6
  7. Y. K. Cho, K. Y. Ahn, and Y. S. Park, A study on adhesion strength of electroless plated deposits on Alumina substrate, J. Kor. Inst. Surf. Eng. 24 (1991) 187-195.
  8. N. Abe, Y. Otani, M. Miyake, M. Kurita, H. Takeda, S. Okamura, and T. Shiosaki, Influence of a $TiO_2$ adhesion layer on the structure and the orientation of a pt layer in Pt/$TiO_2$/$SiO_2$/Si structures, Jpn. J. Appl. Phys 42 (2003) 2791-2795. https://doi.org/10.1143/JJAP.42.2791
  9. K. Davis, A. Agarwal, M. Tomozawa, and K. Hirao, Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass, J. Non Cryst. Solids 203 (1996) 27-36. https://doi.org/10.1016/0022-3093(96)00330-4
  10. G. Matrajt, J. Borg, P. Raynal, Z. Djouadi, L. d'Hendecourt, G. Flynn, and D. Deboffle, FTIR and raman analyses of the tagish lake meteorite: Relationship with the aliphatic hydrocarbons observed in the diffuse interstellar medium, Astronomy & Astrophysics 416 (2004) 983-990. https://doi.org/10.1051/0004-6361:20034526
  11. U. Kirchner, V. Scheer, and R. Vogt, FTIR spectroscopic investigation of the mechanism and kinetics of the heterogeneous reactions of $NO_2$ and $HNO_3$ with soot, J. Phys. Chem. A 104 (2000) 8908-8915. https://doi.org/10.1021/jp0005322
  12. S. L. Brandow, W. J. Dressick, C. R. Marrian, G. Chow, and J. M. Calvert, The morphology of electroless ni deposition on a colloidal pd (II) catalyst, J. Electrochem. Soc. 142 (1995) 2233-2243. https://doi.org/10.1149/1.2044280
  13. M. Honkanen, M. Hoikkanen, M. Vippola, J. Vuorinen, T. Lepisto, P. Jussila, H. Ali-Loytty, M. Lampimaki, and M. Valden, Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids, Appl. Surf. Sci. 257 (2011) 9335-9346. https://doi.org/10.1016/j.apsusc.2011.05.058
  14. M. Bechelany, A. Brioude, S. Bernard, G. Ferro, D. Cornu, and P. Miele, Large-scale preparation of faceted Si3N4 nanorods from $\beta$-SiC nanowires, J. Nanotech. 18 (2007) 335305. https://doi.org/10.1088/0957-4484/18/33/335305
  15. K. H. Leong, H. Y. Chu, S. Ibrahim, and P. Saravanan, Palladium nanoparticles anchored to anatase $TiO_2$ for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity, Beilstein J. Nanotech. 6 (2015) 428-437. https://doi.org/10.3762/bjnano.6.43
  16. A. Hamada, P. Sahu, and D. Porter, Indentation property and corrosion resistance of electroless nickel-phosphorus coatings deposited on austenitic high-mn TWIP steel, Appl. Surf. Sci. 356 (2015) 1-8. https://doi.org/10.1016/j.apsusc.2015.07.153
  17. A. Rittermeier, S. Miao, M. K. Schroter, X. Zhang, van den Berg, Maurits WE, S. Kundu, Y. Wang, S. Schimpf, E. Loffler, and R. A. Fischer, The formation of colloidal copper nanoparticles stabilized by zinc stearate: One-pot single-step synthesis and characterization of the core-shell particles, Phys. Chem. Chem. Phys. 11 (2009) 8358-8366. https://doi.org/10.1039/b908034a
  18. A. Standard, D3359-09e2. standard test methods for measuring adhesion by tape test., ASTM International (2009).
  19. W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, and E. Broszeit, Evaluation of PVD nitride coatings, using impact, scratch and rockwell-C adhesion tests, Thin Solid Films 270 (1995) 431-438. https://doi.org/10.1016/0040-6090(95)06934-8