DOI QR코드

DOI QR Code

Study of Hydrogen Evolution Reaction by Molybdenum Oxide Doped TiO2 Nanotubes

몰리브덴 산화물이 도핑된 티타늄 나노튜브전극의 수소 발생 반응 연구

  • Oh, Kiseok (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Yoo, Hyeonseok (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Gibaek (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 오기석 (인하대학교 화학.화학공학융합학과) ;
  • 유현석 (인하대학교 화학.화학공학융합학과) ;
  • 이기백 (인하대학교 화학.화학공학융합학과) ;
  • 최진섭 (인하대학교 화학.화학공학융합학과)
  • Received : 2016.11.01
  • Accepted : 2016.11.29
  • Published : 2016.12.31

Abstract

In this study, titanium nanotubes, prepared by anodization method, showing high surface and strong chemical stability in acidic and basic media, have been employed for the application to the electrodes for water splitting in KOH solution. Due to its high polarization resistance of $TiO_2$ itself, proper catalysts are essentially required to reduce overpotentials for water oxidation and reduction. Most of academic literature showed noble metal catalysts for foreign dopants in $TiO_2$ electrodes. From commercialization point of view, screening of low-cost catalyst is important. Herein, we propose molybdenum oxide as low-cost catalysts among various catalysts tested in the experiments, which exhibits the highest performance for hydrogen evolution reaction in highly alkaline solution. We showed that molybdenum oxide doped electrode can be operated in extreme acidic and basic conditions as well.

Keywords

References

  1. M. A. Pena, J. P. Gomez, and J. L. G. Fierro, New catalytic routes for syngas and hydrogen production, Appl. Catal,. A 144, (1996) 7-57. https://doi.org/10.1016/0926-860X(96)00108-1
  2. S. Singh, S. Jain, V. PS, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, Hydrogen: A sustainable fuel for future of the transport sector, Renew. Sustainable Energy Rev. 51 (2015) 623-633. https://doi.org/10.1016/j.rser.2015.06.040
  3. J. D. Holladay, J. Hu, D. L. King, and Y. Wang, An overview of hydrogen production technologies, Catal. Today 139 (2009) 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
  4. J. Rossmeisl, A. Logadottir, J. K. Norskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys. 319 (2005) 178-184. https://doi.org/10.1016/j.chemphys.2005.05.038
  5. S. Minagar, C. C. Berndt, J. Wang, E. Ivanova, and C. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta biomaterialia 8 (2012) 2875-2888. https://doi.org/10.1016/j.actbio.2012.04.005
  6. S. B. Patel, A. Hamlekhan, D. Royhman, A. Butt, J. Yuan, T. Shokuhfar, C. Sukotjo,,M. T. Mathew, G. Jursich, and C. G. Takoudis, Enhancing surface characteristics of ti-6al-4v for bio-implants using integrated anodization and thermal oxidation, J Mater. Chem., B 2 (2014) 3597-3608. https://doi.org/10.1039/c3tb21731k
  7. Z. Wang, L. Zhou, and X.W. Lou, Metal oxide hollow nanostructures for Lithium-ion batteries, Adv. Mater. 24 (2012) 1903-1911. https://doi.org/10.1002/adma.201200469
  8. J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, $TiO_2$ nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater. Sci. 11 (2007) 3-18. https://doi.org/10.1016/j.cossms.2007.08.004
  9. Y. Jo, I. Jung, I. Lee, J. Choi and Y. Tak, Fabrication of through-hole $TiO_2$nanotubes by potential shock, Electrochem, Commun. 12 (2010) 616-619. https://doi.org/10.1016/j.elecom.2010.02.013
  10. H. Yoo, Y.-W, Choi, and J. Choi, Ruthenium oxide-doped $TiO_2$ nanotubes by Single-step anodization for water-oxidation applications, ChemCatChem 7 (2015) 643-647. https://doi.org/10.1002/cctc.201402787
  11. S. Kim, H. Yoo, O. Rhee, and J. Choi, Doping of pt into anodic $TiO_2$ nanotubes for water oxidation: Underpotential shock method in Cl-solution, J. Phys. Chem. C 119, (2015) 21497-21503. . https://doi.org/10.1021/acs.jpcc.5b05790
  12. M. Seong, S. Kim, H. Yoo and J. Choi, Doping of anodic nanotubular $TiO_2$ electrodes with MnO2 for use as catalysts in water oxidation, Catal. Today 260 (2016) 135-139. https://doi.org/10.1016/j.cattod.2015.06.006
  13. D. Lee, Y. -W. Choi, Y. -S. Na, S. -S. Choi, D.- W. Park, and J. Choi, $Fe_2O_3$ nanopowders prepared by a thermal plasma process for water oxidation, Mater. Res. Bull. 68 (2015) 221-226. https://doi.org/10.1016/j.materresbull.2015.03.045
  14. Y. -W. Choi, S. Kim, M. Seong, H. Yoo and J. Choi, $NH_4$-doped anodic $WO_3$ prepared through anodization and subsequent $NH_4$OH treatment for water splitting, Appl. Surf. Sci. 324 (2015) 414-418. https://doi.org/10.1016/j.apsusc.2014.10.059
  15. W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen. Raman scattering study on anatase $TiO_2$ nanocrystals, J. Phys. D: Appl. Phys. 33 (2000) 912-916. https://doi.org/10.1088/0022-3727/33/8/305
  16. D. Su, J. Wang, Y. Tang, C. Liu, L. Liu, and X. Han, Constructing $WO_3$/$TiO_2$ composite structure towards sufficient use of solar energy, Chem. Commun. 47 (2011) 4231-4233. https://doi.org/10.1039/c0cc04770h
  17. A. Cimino and B. A. De Angelis, The application of X-Ray photoelectron spectroscopy to the study of molybdenum oxides and supported molybdenum oxide catalysts, J. Catal., 36 (1975) 11-22. https://doi.org/10.1016/0021-9517(75)90004-4
  18. L. Ran, D. zhao, X. Gao, and L. Yin, Highly crystalline Ti-doped $SnO_2$ hollow structured photocatalyst with enhanced photocatalytic activity for degradation of organic dyes, CrystEngComm 17 (2015) 4225-4237. https://doi.org/10.1039/C5CE00184F
  19. P. K. Khatri, M. Aila, J. Porwal, S. Kaul, and S. L. Jain, Industrial resin "INDION 130", modified with vanadyl cations as highly efficient heterogeneous catalyst for epoxidation of fatty compounds with TBHP as oxidant, New J. Chem. 39 (2015) 5960-5965. https://doi.org/10.1039/C5NJ00744E
  20. B. E. Conway, B. V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of $H_2$, and the role of chemisorbed H, Electrochim. Acta 47 (2012) 3571-3594
  21. E. Skulason, V. Tripkovic, M. E. Bjoketun, S. Gudmundsdotir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Josson,§, and J. K. Norskov, Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations, J. Phys. Chem. C 114 (2010) 18182-18197 https://doi.org/10.1021/jp1048887
  22. Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, Mesoporous $MoO_{3-x}$ material as an efficient electrocatalyst for hydrogen evolution reactions, Adv. Energy Mater. 6 (2016) doi:10.1002/aenm.201600528
  23. X. K. Hu, T. T. Qian, Z. T. Song, J. R. Huang, R. Cao and J. Q. Xiao, Comparative study on MoO3 and $H_xMoO_3$ nanobelts: structure and electric transport, Chem. Mater. 20 (2008) 1527-1533 https://doi.org/10.1021/cm702942y
  24. L. Zheng, Y. Xu, D. Jin, and Y. Xie, Novel metastable hexagonal $MoO_3$ nanobelts: synthesis, photochromic, and electrochromic properties, Chem. Mater. 21 (2009) 5681-5690. https://doi.org/10.1021/cm9023887
  25. H. Sinaim, D. J. Ham, J. S. Lee, A. Phuruangrat, S. Thongtem, and T. Thongtem, Free-polymer contorlling morpholgy of $\alpha$-$MoO_3$ nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties, J. Alloy. Comp. 516 (2012) 172-178 https://doi.org/10.1016/j.jallcom.2011.12.024
  26. J. Rajeswari, P. S. Kishore, B. Viswanathan, and T.K. Varadarajan, Facile hydrogen evolution reaction on $WO_3$ nanorods, Nanoscale Res. Lett. 2 (2007) 496-503 https://doi.org/10.1007/s11671-007-9088-y
  27. Y. Liu, W. E. Mustain, Evalutation of ungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts, Int. J. Hydrogen Energy 37 (2012) 8929-8938 https://doi.org/10.1016/j.ijhydene.2012.03.044
  28. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Enhanced catalytic activity in strained chemically exfoliated $WS_2$ nanosheets for hydrogen evolution, Nat. Mater. 12(2013) 850-855 https://doi.org/10.1038/nmat3700
  29. M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers, and S. Jin, Highly active hydrogen evolution catalysis from metallic WS2 nanosheets, Energy Environ. Sci. 7 (2014) 2608-2613 https://doi.org/10.1039/C4EE01329H