DOI QR코드

DOI QR Code

A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis

분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구

  • Kim, Ingyeom (Department of Chemical Engineering, Kwangwoon University) ;
  • Nah, In Wook (Center for Energy Convergence, Korea Institute of Science & Technology) ;
  • Park, Sehkyu (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2016.08.23
  • Accepted : 2016.09.09
  • Published : 2016.12.01

Abstract

As the demand for a clean energy to replace fossil fuel being depleted increases, hydrogen energy is considered as a promising candidate for future energy source. Water electrolysis which produces hydrogen has high energy efficiency and stability but still has a large overpotential for oxygen evolution reaction (OER). In this study, $Co_3O_4$ catalysts with different morphology were prepared by spray pyrolysis from solutions which contain Co precursor and various organic additives (urea, sucrose, and citric acid), followed by post heat treatment. For the catalysts synthesized, X-ray diffraction (XRD) measurements were performed to identify their crystal structure. Morphology and surface shape of the catalysts were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface area and pore volume were examined by nitrogen adsortpion & desorption tests and X-ray photoelectron spectroscopy (XPS) was conducted to confirm nitrogen doping. Linear sweep voltammetry (LSV) was carried out to investigate OER activity of $Co_3O_4$ catalysts. As a result, bare-$Co_3O_4$ which has high surface area and small particle size determined by spray pyrolysis showed high activity toward OER.

최근 화석연료를 대체할 친환경 신재생에너지에 대한 요구가 증가하면서 수소에너지가 미래 대체에너지원으로서 주목받고 있다. 수소를 생산하는 방법 중 수전해 기술은 에너지효율과 안정성이 뛰어난 장점이 있지만, 산소발생반응시 발생하는 높은 과전압은 여전히 단점으로 지적되고 있다. 본 연구에서는 분무열분해 공정을 통하여 Co 전구체로부터 $Co_3O_4$를 제조하였다. 또한, urea, sucrose, citric acid의 유기물첨가제를 사용하여 다양한 입자 크기와 표면형상을 가지는 $Co_3O_4$를 제조하였고, 필요에 따라 추가로 열처리를 실시하였다. 합성한 $Co_3O_4$의 물리적 특성을 분석하기 위해 X-선 회절 분석(XRD)으로 결정성을 조사하였고, 주사전자현미경(SEM)과 투과전자현미경(TEM)으로 입자형상 및 표면을 분석하였다. 질소 흡 탈착 시험을 통해 촉매의 비표면적 및 기공부피를 측정하였고, 질소도핑을 확인하기 위해 X-선 광전자 분광법(XPS)을 사용하였다. 촉매의 산소발생반응 활성을 알아보기 위해 3전극 셀에서 선형주사전위법(LSV)으로 전기화학적 거동을 분석하였다. 첨가제를 사용하지 않은 $Co_3O_4$가 가장 우수한 활성을 보였고, 이는 분무열분해법을 통하여 상대적으로 작은 입자형성과 높은 비표면적의 영향인 것으로 판단된다.

Keywords

References

  1. Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G., Ross, P. N. and Markovic, N. M., "Trends in Electrocatalysis on Extended and Nanoscale Pt-bimetallic Alloy Surfaces," Nat. Mater., 6, 241-247(2007). https://doi.org/10.1038/nmat1840
  2. Jeong, J. H., Shin, E. K., Jeong, J. J., Na, I. C., Chu, C. H. and Park, K. P., "Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis," Korean Chem. Eng. Res., 52(6), 695-700(2014). https://doi.org/10.9713/kcer.2014.52.6.695
  3. Yoo, S. J., Jeon, T. Y. and Sung, Y. E., "Theory & Design of Electrocatalyst for Polymer Electrolyte Membrane Feul Cell," J. Korean Electrochem. Soc., 12(1), 11-25(2009). https://doi.org/10.5229/JKES.2009.12.1.011
  4. http://www.h2journal.com/displaynews.
  5. Lee, J. Y., Yi, Y. M. and Uhm, S. H., "Understanding Uunderlying Process of Water Electrolysis," J. Korea Ind. Eng. Chem., 19(4), 357-365(2008).
  6. Park, Y. B., Lim, H. K., Woo, H. C., "Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae," Korean Chem. Eng. Res., 54(1), 94-100(2016). https://doi.org/10.9713/kcer.2016.54.1.94
  7. Shin, J. S., Cho, S. J., Choi, S. H., Qasim, F., Lee, H. N., Park, J. H., Lee, W. J., Lee, E. S. and Park, S. J., "A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production," Korean Chem. Eng. Res., 52(4), 459-466(2014). https://doi.org/10.9713/kcer.2014.52.4.459
  8. Kim, D. J., Han, G. B., Park, N. K., Lee, T. J. and Kang, M. S., "Hydrogen Production from Splitting of Methanol/Water Solution Using Perovskite Structured $Nb_xSrTi_{1-x}O_3$ Photocatalysts," Korean Chem. Eng. Res., 51(4), 513-517(2013). https://doi.org/10.9713/kcer.2013.51.4.513
  9. Kim, J. W., Sim, K. S., Kim, J. D., Han, S. D. and Jung, K. D, "Thermochemical Cycles for Hydrogen Production from Water," J. Korean Hydrogen Energy Society, 12(1), 11-21(2001).
  10. Yoon, D. J. and Koh, J. H., "A Study on Thermodynamic Efficiency for HTSE Hydrogen and Synthesis Gas Production System using Nuclear Plant," Trans. of the Korean Hydrogen and New Energy Society, 20(5), 416-423(2009).
  11. Choi, H. S., Yim, D. S., Rhyu, C. H., Kim, J. C. and Hwang, G. J., "Study on the Electrode Characteristics for the Alkaline Water Electrolysis," Trans. of the Korean Hydrogen and New Energy Society, 23(2), 117-124(2012). https://doi.org/10.7316/KHNES.2012.23.2.117
  12. 이택홍., "수전해 장치 기술 개요 및 전망", Journal of Electrical world monthly magazine, 459, 14-17(2015).
  13. Santos, D. M. F., Sequeira, C. A. C. and Figueiredo, J. L., "Hydrogen Production by Alkaline Water Electrolysis," Quim. Nova, 36(8), 1176-1193(2013). https://doi.org/10.1590/S0100-40422013000800017
  14. Chemelewski, W. D., Lee, H. C., Lin, J. F., Bard, A. J. and Mullins, C. B., "Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting," J. Am. Chem. Soc., 136(7), 2843-2850(2014). https://doi.org/10.1021/ja411835a
  15. Krol, R. V. D., Liang, Y. and Schoonman, J., "Solar Hydrogen Production with Nanostructured Metal Oxides," J. Mater. Chem., 18, 2311-2320(2008). https://doi.org/10.1039/b718969a
  16. Artero, V., Kerlidou, M. C. and Fontecave, M., "Splitting Water with Cobalt," Angew. Chem. Int. Ed., 50, 7238-7266(2011). https://doi.org/10.1002/anie.201007987
  17. Seabold, J. A. and Choi, K. S., "Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a $WO_3$ Photoanode," Chem, Mater., 23(5), 1105-1112(2011). https://doi.org/10.1021/cm1019469
  18. Lee, Y. M., Suntivich, J., May, K. J., Perry, E. E. and Horn, Y. S., "Synthesis and Activities of Rutile $IrO_2$ and $RuO_2$ Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions," J. Phys. Chem. Lett., 3, 399-404(2012). https://doi.org/10.1021/jz2016507
  19. Bhosale, R. R., Kumar, A., Broeke, L. J. V., Gharbia, S., Dardor, D., Jilani, M., Folady, J., Fakih, M. S. A. and Tarsad, M. A., "Solar Hydrogen Production Via Thermochemical Iron Oxide-iron Sulfate Water Splitting Cycle," Int. J. Hydrogen Energy, 40(4), 1639-1650 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.118
  20. Gokon, N., Murayama, H., Nagasaki, A. and Kodama, T., "Thermochemical Two-step Water Splitting Cycles by Monoclinic $ZrO_2$-Supported $NiFe_2O_4$ and $Fe_3O_4$ Powders and Ceramic Foam Devices," Solar Energy, 83(4), 527-537(2009). https://doi.org/10.1016/j.solener.2008.10.003
  21. Lee, S. H., Yu, S. H., Lee, J. E., Jin, A. H., Lee, D. J., Lee, N. H., Jo, H. G., Shin, K. S., Ahn, T. Y., Kim, Y. W., Choe, H. M., Sung, Y. E. and Hyeon, T. H., "Self-Assembled $Fe_3O_4$ Nanoparticle Clusters as High-Performance Anode for Lithium Ion Batteries via Geometric Confinement," Nano Lett., 13(9), 4249-4256(2013). https://doi.org/10.1021/nl401952h
  22. Zhang, J. H., Feng, J. Y., Zhu, T., Liu, Z. L., Li, Q. Y., Chen, S. Z. and Xu, C. W., "Pd-doped Urchin-like $MnO_2$-carbon Sphere Three-dimensional (3D) Material for Oxygen Evolution Reaction," Electrochimica Acta, 196(1), 661-669(2016). https://doi.org/10.1016/j.electacta.2016.03.025
  23. Xie, K., Masa, J., Madej, E., Yang, F., Weide, P., Dong, W., Muhler, M., Schuhmann, W. and Xia, W., "$Co_3O_4-MnO_2-CNT$ Hybrids Synthesized by HNO3 Vapor Oxidation of Catalytically Grown CNTs as OER," ChemCatChem, 7, 3027-3035(2015). https://doi.org/10.1002/cctc.201500469
  24. Wang, X., Zheng, Y., Yuan, J., Shen, J., Wang, A. J., Niu, L. and Huang, S., "Uniform Deposition of $Co_3O_4$ Nanosheets on Exfoliated $MoS_2$ Nanosheets as Advanced Catalysts for Water Splitting," Electrochimica Acta, 212(10), 890-897(2016). https://doi.org/10.1016/j.electacta.2016.07.078
  25. Li, L., Tian, T., Jiang, J. and Ai, L., "Hierarchically Porous $Co_3O_4$ Architectures with Honeycomb-like Structures for Efficient Oxygen Generation from Electrochemical Water Splitting," J. Power Sources, 294(30), 103-111(2015). https://doi.org/10.1016/j.jpowsour.2015.06.056
  26. Hou, Y., Li, J., Wen, Z., Cui, S., Yuan, C. and Chen, J., "$Co_3O_4$ Nanoparticles Embedded in Nitrogen-doped Porous Carbon Dodecahedrons with Enhanced Electrochemical Properties for Lithium Storage and Water Splitting," Nano Energy, 12, 1-8(2015). https://doi.org/10.1016/j.nanoen.2014.11.043
  27. Chen, S., Zhao, Y., Sun, B., Ao, Z., Xie, X., Wei, Y. and Wang, G., "Microwave-assisted Synthesis of Mesoporous $Co_3O_4$ Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions," ACS Appl. Mater. Interfaces, 7, 3306-3313 (2015). https://doi.org/10.1021/am508136k
  28. Rosen, J., Hutchings, G. S. and Jiao, F., "Ordered Mesoporous Cobalt Oxide as Highly Efficient Oxygen Evolution Catalyst," J. Am. Chem. Soc., 135(11), 4516-4521(2013). https://doi.org/10.1021/ja400555q
  29. Ryu, W. H., Yoon, T. H., Song, S. H., Jeon, S. W., Park, Y. J. and Kim, I. D., "Bifunctional Composite Catalysts Using $Co_3O_4$ Nanofibers Immobilized on Nonoxidized Graphene Nanoflakes for High-Capacity and Long-Cycle $Li-O_2$ Batteries," Nano Lett., 13(9), 4190-4197(2013). https://doi.org/10.1021/nl401868q
  30. Solmaz, R. and Kardas, G., "Electrochemical Deposition and Characterization of NiFe Coatings as Electrocatalytic Materials for Alkaline Water Electrolysis," Electrochimica Acta, 54(14), 3726-3734(2009). https://doi.org/10.1016/j.electacta.2009.01.064
  31. Chen, R., Wang, H, Y., Miao, J., Yang, H. and Liu, B., "A Flexible High-performance Oxygen Evolution Electrode with Three-dimensional $NiCo_2O_4$ Core-shell Nanowires," Nano Energy, 11, 333-340(2015). https://doi.org/10.1016/j.nanoen.2014.11.021
  32. Kibria, A. K. M. F. and Tarafdar, S. A., "Electrochemical Studies of a Nickel-copper Electrode for the Oxygen Evolution Reaction (OER)," Int. J. Hydrogen Energy, 27(9), 879-884(2002). https://doi.org/10.1016/S0360-3199(01)00185-9
  33. Prabu, M., Ketpang, K. and Shanmugam, S., "Hierarchical Nanostructured $NiCo_2O_4$ as An Efficient Bifunctional Non-precious Metal Catalyst for Rechargeable Zinc-air Batteries," Nanoscale, 6, 3173-3181(2014). https://doi.org/10.1039/c3nr05835b
  34. Lu, X. and Zhao, C., "Highly Efficient and Robust Oxygen Evolution Catalysts Achieved by Anchoring Nanocrystalline Cobalt Oxides Onto Mildly Oxidized Multiwalled Carbon Nanotubes," J. Mater. Chem. A, 1, 12053-12059(2013). https://doi.org/10.1039/c3ta12912h
  35. Pan, L., Li, L., Tian, D., Li, C. and Wang, J., "Synthesis of $Co_3O_4$ Nanomaterials with Different Morphologies and Their Photocatalytic Performances," JOM, 66(6), 1035-1042(2014). https://doi.org/10.1007/s11837-014-0983-2
  36. Liu, I., Li, L., Patterson, N. A. and Manthiram, A., "Morphological Transformations during In Situ Electrochemical Generation of 2- Dimensional $Co_3O_4$ Hexagonal Nanoplates," J. Electrochem. Soc., 163(2), A150-A155(2016). https://doi.org/10.1149/2.0331602jes
  37. Castro, E. B. and Gervasi, C. A., "Electrodeposited Ni-Co-oxide Electrodes: Characterization and Kinetics of the Oxygen Evolution Reaction," Int. J. Hydrogen Energy, 25, 1163-1170(2000). https://doi.org/10.1016/S0360-3199(00)00033-1
  38. Koza, J. A., He, Z., Miller, A. S., Switzer, J. A., "Electrodeposition of Crystalline $Co_3O_4$-A Catalyst for the Oxygen Evolution Reaction," Chem. Mater., 24(18), 3567-3573(2012). https://doi.org/10.1021/cm3012205
  39. Sun, C., Rajasekhara, S., Chen, Y. and Goodenough, J. B., "Facile Synthesis of Monodisperse Porous $Co_3O_4$ Microspheres with Superior Ethanol Sensing Properties," Chem. Commun., 47, 12852-12854(2011). https://doi.org/10.1039/c1cc15555e
  40. Bahlawane, N., FischerRivera, E., Hoinghaus, K. K. and Brechling, A., "Characterization and Tests of Planar $Co_3O_4$ Model Catalysts Prepared by Chemical Vapor Deposition," Appl. Catal. B, 53, 245-255(2004). https://doi.org/10.1016/j.apcatb.2004.06.001
  41. Blakemore, J. D., Gray, H. B., Winkler, J. R. and Muller, A. M., "$Co_3O_4$ Nanoparticle Water-Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids," ACS Catal., 3, 2497-2500(2013). https://doi.org/10.1021/cs400639b
  42. Buyukyazi, M., Hegemann, C., Lehnen, T., Tyrra, W. and Mathur, S., "Molecular Co(II) and Co(III) Heteroarylalkenolates as Efficient Precursors for Chemical Vapor Deposition of $Co_3O_4$ Nanowires," Inorg. Chem., 53(20), 10928-10936(2014). https://doi.org/10.1021/ic501157e
  43. Barrera, C. E., Flores, J. C. M., Gonzalez, G. F., Lopez, M. O. and Rosas, R. C., "Spectroscopic Ellipsometry Study of $Co_3O_4$ Thin Films Deposited on Several Metal Substrates," The Open Surface Science Journal, 5, 9-16(2013). https://doi.org/10.2174/1876531901305010009
  44. Won, J. M., Kim, J. H., Choi, Y. J., Cho, J. S. and Kang, Y. C., "Design and Synthesis of Metal Oxide Hollow Nanopowders for Lithium-ion Batteries by Combining Nanoscale Kirkendall Diffusion and Flame Spray Pyrolysis," Ceram. Int., 42, 5461-5471 (2016). https://doi.org/10.1016/j.ceramint.2015.12.092
  45. Ko, Y. N., Choi, S. H. and Kang, Y. C., "Nano-sized $Ag-BaTiO_3$ Composite Powders with Various Amount of Ag Prepared by Spray Pyrolysis," J. Eur. Ceram. Soc., 33(7), 1335-1341(2013). https://doi.org/10.1016/j.jeurceramsoc.2012.11.028
  46. Ko, Y. N. and Kang, Y. C., "Characteristics of Ag-doped $BaTiO_3$ Nanopowders Prepared by Spray Pyrolysis," Ceram. Int., 38, 2071-2077(2012). https://doi.org/10.1016/j.ceramint.2011.10.044
  47. Wang, J., Liu, W., Chen, J., Wang, H., Liu, S. and Chen, S., "Biotemplated MnO/C Microtubes from Spirogyra with Improved Electrochemical Performance for Lithium-ion Batterys," Electrochimica Acta, 188, 210-217(2016). https://doi.org/10.1016/j.electacta.2015.11.128
  48. Esswein, A. J., McMurdo, M. J., Ross, P. N., Bell, A. T. and Tilley, T. D., "Size-Dependent Activity of $Co_3O_4$ Nanoparticle Anodes for Alkaline Water Electrolysis," J. Phys. Chem. C, 113, 15068-15072(2009). https://doi.org/10.1021/jp904022e
  49. Shi, N., Cheng, W., Zhou, H., Fan, T. and Niederberger, M., "Facile Synthesis of Monodisperse $Co_3O_4$ Quantum Dots with Efficient Oxygen Evolution Activity," Chem. Commun., 51, 1338-1340(2015). https://doi.org/10.1039/C4CC08179J
  50. Yao, L., Zhong, H., Deng, C. W., Li, X. F. and Zhang, H. M., "Template-assisted Synthesis of Hierarchically Porous $Co_3O_4$ with Enhanced Oxygen Evolution Activity," J. Energy Chem., 25, 153-157(2016). https://doi.org/10.1016/j.jechem.2015.11.013
  51. Park, G. D., Cho, J. S. and Kang, Y. C., "Novel Cobalt Oxide-nanobubble-decorated Reduced Graphene Oxide Sphere with Superior Electrochemical Properties Prepared by Nanoscale Kirkendall Diffusion Process," Nano Energy, 17, 17-26(2015). https://doi.org/10.1016/j.nanoen.2015.07.026
  52. Tian, G. L., Zhao, M. Q., Yu, D., Kong, X. Y., Huang, J. Q., Zhang, Q. and Wei, F., "Nitrogen-Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/Reduction Reaction," Small, 10, 2251-2259(2014). https://doi.org/10.1002/smll.201303715
  53. Gao, M. R., Cao, X., Gao Q., Xu, Y. F., Zheng, Y. R., Jiang, J. and Yu, S. H., "Nitrogen-Doped Graphene Supported $CoSe_2$ Nanobelt Composite Catalyst for Efficient Water Oxidation," ACS Nano, 8, 3970-3978(2014). https://doi.org/10.1021/nn500880v
  54. Chen, S., Duan, J., Jaroniec, M. and Qiao, S. Z., "Nitrogen and Oxygen Dual-Doped Carbon Hydrogel Film as a Substrate-Free Electrode for Highly Efficient Oxygen Evolution Reaction," Adv. Mater., 26, 2925-2930(2014). https://doi.org/10.1002/adma.201305608
  55. Gao, M. R., Xu, Y. F., Jiang, J., Zheng, Y. R. and Yu, S. H., "Water Oxidation Electrocatalyzed by an Efficient $Mn_3O_4/CoSe_2$ Nanocomposite," J. Am. Chem. Soc., 134, 2930-2933(2012). https://doi.org/10.1021/ja211526y