References
- Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G., Ross, P. N. and Markovic, N. M., "Trends in Electrocatalysis on Extended and Nanoscale Pt-bimetallic Alloy Surfaces," Nat. Mater., 6, 241-247(2007). https://doi.org/10.1038/nmat1840
- Jeong, J. H., Shin, E. K., Jeong, J. J., Na, I. C., Chu, C. H. and Park, K. P., "Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis," Korean Chem. Eng. Res., 52(6), 695-700(2014). https://doi.org/10.9713/kcer.2014.52.6.695
- Yoo, S. J., Jeon, T. Y. and Sung, Y. E., "Theory & Design of Electrocatalyst for Polymer Electrolyte Membrane Feul Cell," J. Korean Electrochem. Soc., 12(1), 11-25(2009). https://doi.org/10.5229/JKES.2009.12.1.011
- http://www.h2journal.com/displaynews.
- Lee, J. Y., Yi, Y. M. and Uhm, S. H., "Understanding Uunderlying Process of Water Electrolysis," J. Korea Ind. Eng. Chem., 19(4), 357-365(2008).
- Park, Y. B., Lim, H. K., Woo, H. C., "Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae," Korean Chem. Eng. Res., 54(1), 94-100(2016). https://doi.org/10.9713/kcer.2016.54.1.94
- Shin, J. S., Cho, S. J., Choi, S. H., Qasim, F., Lee, H. N., Park, J. H., Lee, W. J., Lee, E. S. and Park, S. J., "A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production," Korean Chem. Eng. Res., 52(4), 459-466(2014). https://doi.org/10.9713/kcer.2014.52.4.459
-
Kim, D. J., Han, G. B., Park, N. K., Lee, T. J. and Kang, M. S., "Hydrogen Production from Splitting of Methanol/Water Solution Using Perovskite Structured
$Nb_xSrTi_{1-x}O_3$ Photocatalysts," Korean Chem. Eng. Res., 51(4), 513-517(2013). https://doi.org/10.9713/kcer.2013.51.4.513 - Kim, J. W., Sim, K. S., Kim, J. D., Han, S. D. and Jung, K. D, "Thermochemical Cycles for Hydrogen Production from Water," J. Korean Hydrogen Energy Society, 12(1), 11-21(2001).
- Yoon, D. J. and Koh, J. H., "A Study on Thermodynamic Efficiency for HTSE Hydrogen and Synthesis Gas Production System using Nuclear Plant," Trans. of the Korean Hydrogen and New Energy Society, 20(5), 416-423(2009).
- Choi, H. S., Yim, D. S., Rhyu, C. H., Kim, J. C. and Hwang, G. J., "Study on the Electrode Characteristics for the Alkaline Water Electrolysis," Trans. of the Korean Hydrogen and New Energy Society, 23(2), 117-124(2012). https://doi.org/10.7316/KHNES.2012.23.2.117
- 이택홍., "수전해 장치 기술 개요 및 전망", Journal of Electrical world monthly magazine, 459, 14-17(2015).
- Santos, D. M. F., Sequeira, C. A. C. and Figueiredo, J. L., "Hydrogen Production by Alkaline Water Electrolysis," Quim. Nova, 36(8), 1176-1193(2013). https://doi.org/10.1590/S0100-40422013000800017
- Chemelewski, W. D., Lee, H. C., Lin, J. F., Bard, A. J. and Mullins, C. B., "Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting," J. Am. Chem. Soc., 136(7), 2843-2850(2014). https://doi.org/10.1021/ja411835a
- Krol, R. V. D., Liang, Y. and Schoonman, J., "Solar Hydrogen Production with Nanostructured Metal Oxides," J. Mater. Chem., 18, 2311-2320(2008). https://doi.org/10.1039/b718969a
- Artero, V., Kerlidou, M. C. and Fontecave, M., "Splitting Water with Cobalt," Angew. Chem. Int. Ed., 50, 7238-7266(2011). https://doi.org/10.1002/anie.201007987
-
Seabold, J. A. and Choi, K. S., "Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a
$WO_3$ Photoanode," Chem, Mater., 23(5), 1105-1112(2011). https://doi.org/10.1021/cm1019469 -
Lee, Y. M., Suntivich, J., May, K. J., Perry, E. E. and Horn, Y. S., "Synthesis and Activities of Rutile
$IrO_2$ and$RuO_2$ Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions," J. Phys. Chem. Lett., 3, 399-404(2012). https://doi.org/10.1021/jz2016507 - Bhosale, R. R., Kumar, A., Broeke, L. J. V., Gharbia, S., Dardor, D., Jilani, M., Folady, J., Fakih, M. S. A. and Tarsad, M. A., "Solar Hydrogen Production Via Thermochemical Iron Oxide-iron Sulfate Water Splitting Cycle," Int. J. Hydrogen Energy, 40(4), 1639-1650 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.118
-
Gokon, N., Murayama, H., Nagasaki, A. and Kodama, T., "Thermochemical Two-step Water Splitting Cycles by Monoclinic
$ZrO_2$ -Supported$NiFe_2O_4$ and$Fe_3O_4$ Powders and Ceramic Foam Devices," Solar Energy, 83(4), 527-537(2009). https://doi.org/10.1016/j.solener.2008.10.003 -
Lee, S. H., Yu, S. H., Lee, J. E., Jin, A. H., Lee, D. J., Lee, N. H., Jo, H. G., Shin, K. S., Ahn, T. Y., Kim, Y. W., Choe, H. M., Sung, Y. E. and Hyeon, T. H., "Self-Assembled
$Fe_3O_4$ Nanoparticle Clusters as High-Performance Anode for Lithium Ion Batteries via Geometric Confinement," Nano Lett., 13(9), 4249-4256(2013). https://doi.org/10.1021/nl401952h -
Zhang, J. H., Feng, J. Y., Zhu, T., Liu, Z. L., Li, Q. Y., Chen, S. Z. and Xu, C. W., "Pd-doped Urchin-like
$MnO_2$ -carbon Sphere Three-dimensional (3D) Material for Oxygen Evolution Reaction," Electrochimica Acta, 196(1), 661-669(2016). https://doi.org/10.1016/j.electacta.2016.03.025 -
Xie, K., Masa, J., Madej, E., Yang, F., Weide, P., Dong, W., Muhler, M., Schuhmann, W. and Xia, W., "
$Co_3O_4-MnO_2-CNT$ Hybrids Synthesized by HNO3 Vapor Oxidation of Catalytically Grown CNTs as OER," ChemCatChem, 7, 3027-3035(2015). https://doi.org/10.1002/cctc.201500469 -
Wang, X., Zheng, Y., Yuan, J., Shen, J., Wang, A. J., Niu, L. and Huang, S., "Uniform Deposition of
$Co_3O_4$ Nanosheets on Exfoliated$MoS_2$ Nanosheets as Advanced Catalysts for Water Splitting," Electrochimica Acta, 212(10), 890-897(2016). https://doi.org/10.1016/j.electacta.2016.07.078 -
Li, L., Tian, T., Jiang, J. and Ai, L., "Hierarchically Porous
$Co_3O_4$ Architectures with Honeycomb-like Structures for Efficient Oxygen Generation from Electrochemical Water Splitting," J. Power Sources, 294(30), 103-111(2015). https://doi.org/10.1016/j.jpowsour.2015.06.056 -
Hou, Y., Li, J., Wen, Z., Cui, S., Yuan, C. and Chen, J., "
$Co_3O_4$ Nanoparticles Embedded in Nitrogen-doped Porous Carbon Dodecahedrons with Enhanced Electrochemical Properties for Lithium Storage and Water Splitting," Nano Energy, 12, 1-8(2015). https://doi.org/10.1016/j.nanoen.2014.11.043 -
Chen, S., Zhao, Y., Sun, B., Ao, Z., Xie, X., Wei, Y. and Wang, G., "Microwave-assisted Synthesis of Mesoporous
$Co_3O_4$ Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions," ACS Appl. Mater. Interfaces, 7, 3306-3313 (2015). https://doi.org/10.1021/am508136k - Rosen, J., Hutchings, G. S. and Jiao, F., "Ordered Mesoporous Cobalt Oxide as Highly Efficient Oxygen Evolution Catalyst," J. Am. Chem. Soc., 135(11), 4516-4521(2013). https://doi.org/10.1021/ja400555q
-
Ryu, W. H., Yoon, T. H., Song, S. H., Jeon, S. W., Park, Y. J. and Kim, I. D., "Bifunctional Composite Catalysts Using
$Co_3O_4$ Nanofibers Immobilized on Nonoxidized Graphene Nanoflakes for High-Capacity and Long-Cycle$Li-O_2$ Batteries," Nano Lett., 13(9), 4190-4197(2013). https://doi.org/10.1021/nl401868q - Solmaz, R. and Kardas, G., "Electrochemical Deposition and Characterization of NiFe Coatings as Electrocatalytic Materials for Alkaline Water Electrolysis," Electrochimica Acta, 54(14), 3726-3734(2009). https://doi.org/10.1016/j.electacta.2009.01.064
-
Chen, R., Wang, H, Y., Miao, J., Yang, H. and Liu, B., "A Flexible High-performance Oxygen Evolution Electrode with Three-dimensional
$NiCo_2O_4$ Core-shell Nanowires," Nano Energy, 11, 333-340(2015). https://doi.org/10.1016/j.nanoen.2014.11.021 - Kibria, A. K. M. F. and Tarafdar, S. A., "Electrochemical Studies of a Nickel-copper Electrode for the Oxygen Evolution Reaction (OER)," Int. J. Hydrogen Energy, 27(9), 879-884(2002). https://doi.org/10.1016/S0360-3199(01)00185-9
-
Prabu, M., Ketpang, K. and Shanmugam, S., "Hierarchical Nanostructured
$NiCo_2O_4$ as An Efficient Bifunctional Non-precious Metal Catalyst for Rechargeable Zinc-air Batteries," Nanoscale, 6, 3173-3181(2014). https://doi.org/10.1039/c3nr05835b - Lu, X. and Zhao, C., "Highly Efficient and Robust Oxygen Evolution Catalysts Achieved by Anchoring Nanocrystalline Cobalt Oxides Onto Mildly Oxidized Multiwalled Carbon Nanotubes," J. Mater. Chem. A, 1, 12053-12059(2013). https://doi.org/10.1039/c3ta12912h
-
Pan, L., Li, L., Tian, D., Li, C. and Wang, J., "Synthesis of
$Co_3O_4$ Nanomaterials with Different Morphologies and Their Photocatalytic Performances," JOM, 66(6), 1035-1042(2014). https://doi.org/10.1007/s11837-014-0983-2 -
Liu, I., Li, L., Patterson, N. A. and Manthiram, A., "Morphological Transformations during In Situ Electrochemical Generation of 2- Dimensional
$Co_3O_4$ Hexagonal Nanoplates," J. Electrochem. Soc., 163(2), A150-A155(2016). https://doi.org/10.1149/2.0331602jes - Castro, E. B. and Gervasi, C. A., "Electrodeposited Ni-Co-oxide Electrodes: Characterization and Kinetics of the Oxygen Evolution Reaction," Int. J. Hydrogen Energy, 25, 1163-1170(2000). https://doi.org/10.1016/S0360-3199(00)00033-1
-
Koza, J. A., He, Z., Miller, A. S., Switzer, J. A., "Electrodeposition of Crystalline
$Co_3O_4$ -A Catalyst for the Oxygen Evolution Reaction," Chem. Mater., 24(18), 3567-3573(2012). https://doi.org/10.1021/cm3012205 -
Sun, C., Rajasekhara, S., Chen, Y. and Goodenough, J. B., "Facile Synthesis of Monodisperse Porous
$Co_3O_4$ Microspheres with Superior Ethanol Sensing Properties," Chem. Commun., 47, 12852-12854(2011). https://doi.org/10.1039/c1cc15555e -
Bahlawane, N., FischerRivera, E., Hoinghaus, K. K. and Brechling, A., "Characterization and Tests of Planar
$Co_3O_4$ Model Catalysts Prepared by Chemical Vapor Deposition," Appl. Catal. B, 53, 245-255(2004). https://doi.org/10.1016/j.apcatb.2004.06.001 -
Blakemore, J. D., Gray, H. B., Winkler, J. R. and Muller, A. M., "
$Co_3O_4$ Nanoparticle Water-Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids," ACS Catal., 3, 2497-2500(2013). https://doi.org/10.1021/cs400639b -
Buyukyazi, M., Hegemann, C., Lehnen, T., Tyrra, W. and Mathur, S., "Molecular Co(II) and Co(III) Heteroarylalkenolates as Efficient Precursors for Chemical Vapor Deposition of
$Co_3O_4$ Nanowires," Inorg. Chem., 53(20), 10928-10936(2014). https://doi.org/10.1021/ic501157e -
Barrera, C. E., Flores, J. C. M., Gonzalez, G. F., Lopez, M. O. and Rosas, R. C., "Spectroscopic Ellipsometry Study of
$Co_3O_4$ Thin Films Deposited on Several Metal Substrates," The Open Surface Science Journal, 5, 9-16(2013). https://doi.org/10.2174/1876531901305010009 - Won, J. M., Kim, J. H., Choi, Y. J., Cho, J. S. and Kang, Y. C., "Design and Synthesis of Metal Oxide Hollow Nanopowders for Lithium-ion Batteries by Combining Nanoscale Kirkendall Diffusion and Flame Spray Pyrolysis," Ceram. Int., 42, 5461-5471 (2016). https://doi.org/10.1016/j.ceramint.2015.12.092
-
Ko, Y. N., Choi, S. H. and Kang, Y. C., "Nano-sized
$Ag-BaTiO_3$ Composite Powders with Various Amount of Ag Prepared by Spray Pyrolysis," J. Eur. Ceram. Soc., 33(7), 1335-1341(2013). https://doi.org/10.1016/j.jeurceramsoc.2012.11.028 -
Ko, Y. N. and Kang, Y. C., "Characteristics of Ag-doped
$BaTiO_3$ Nanopowders Prepared by Spray Pyrolysis," Ceram. Int., 38, 2071-2077(2012). https://doi.org/10.1016/j.ceramint.2011.10.044 - Wang, J., Liu, W., Chen, J., Wang, H., Liu, S. and Chen, S., "Biotemplated MnO/C Microtubes from Spirogyra with Improved Electrochemical Performance for Lithium-ion Batterys," Electrochimica Acta, 188, 210-217(2016). https://doi.org/10.1016/j.electacta.2015.11.128
-
Esswein, A. J., McMurdo, M. J., Ross, P. N., Bell, A. T. and Tilley, T. D., "Size-Dependent Activity of
$Co_3O_4$ Nanoparticle Anodes for Alkaline Water Electrolysis," J. Phys. Chem. C, 113, 15068-15072(2009). https://doi.org/10.1021/jp904022e -
Shi, N., Cheng, W., Zhou, H., Fan, T. and Niederberger, M., "Facile Synthesis of Monodisperse
$Co_3O_4$ Quantum Dots with Efficient Oxygen Evolution Activity," Chem. Commun., 51, 1338-1340(2015). https://doi.org/10.1039/C4CC08179J -
Yao, L., Zhong, H., Deng, C. W., Li, X. F. and Zhang, H. M., "Template-assisted Synthesis of Hierarchically Porous
$Co_3O_4$ with Enhanced Oxygen Evolution Activity," J. Energy Chem., 25, 153-157(2016). https://doi.org/10.1016/j.jechem.2015.11.013 - Park, G. D., Cho, J. S. and Kang, Y. C., "Novel Cobalt Oxide-nanobubble-decorated Reduced Graphene Oxide Sphere with Superior Electrochemical Properties Prepared by Nanoscale Kirkendall Diffusion Process," Nano Energy, 17, 17-26(2015). https://doi.org/10.1016/j.nanoen.2015.07.026
- Tian, G. L., Zhao, M. Q., Yu, D., Kong, X. Y., Huang, J. Q., Zhang, Q. and Wei, F., "Nitrogen-Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/Reduction Reaction," Small, 10, 2251-2259(2014). https://doi.org/10.1002/smll.201303715
-
Gao, M. R., Cao, X., Gao Q., Xu, Y. F., Zheng, Y. R., Jiang, J. and Yu, S. H., "Nitrogen-Doped Graphene Supported
$CoSe_2$ Nanobelt Composite Catalyst for Efficient Water Oxidation," ACS Nano, 8, 3970-3978(2014). https://doi.org/10.1021/nn500880v - Chen, S., Duan, J., Jaroniec, M. and Qiao, S. Z., "Nitrogen and Oxygen Dual-Doped Carbon Hydrogel Film as a Substrate-Free Electrode for Highly Efficient Oxygen Evolution Reaction," Adv. Mater., 26, 2925-2930(2014). https://doi.org/10.1002/adma.201305608
-
Gao, M. R., Xu, Y. F., Jiang, J., Zheng, Y. R. and Yu, S. H., "Water Oxidation Electrocatalyzed by an Efficient
$Mn_3O_4/CoSe_2$ Nanocomposite," J. Am. Chem. Soc., 134, 2930-2933(2012). https://doi.org/10.1021/ja211526y