DOI QR코드

DOI QR Code

수치해석을 통한 해상풍력 말뚝지지중력식기초의 수평거동 분석

Numerical Study on Lateral Pile Behaviors of Piled Gravity Base Foundations for Offshore Wind Turbine

  • Seo, Ji-Hoon (Dept. of Civil Environmental Engrg., Kongju National Univ.) ;
  • Choo, Yun Wook (Dept. of Civil Environmental Engrg., Kongju National Univ.) ;
  • Goo, Jeong-Min (Dongmyeong Eng. Consultants & Architecture CO.) ;
  • Kim, Youngho (University of Western Australia COFS) ;
  • Park, Jae Hyun (Korea Institute of Civil Engrg. and Building Technology, Geotechnical Engrg. Research Institute)
  • 투고 : 2016.06.01
  • 심사 : 2016.10.06
  • 발행 : 2016.11.30

초록

본 연구에서는 해상풍력타워를 지지하는 말뚝지지중력식기초에 대한 수평거동을 분석하기 위하여 3차원 수치해석을 수행하였다. 말뚝지지중력식기초는 연약한 점토지반에 취약한 중력식기초를 보완하기 위하여 개발되었으며, 다섯본의 말뚝이 십자배열로 설치되어 수직지지력을 확보한다. 수치해석은 다음 네 가지 케이스를 모델링하여 비교하였다. 이는 a) 단말뚝 b) $3{\times}3$무리말뚝 c) 십자배열무리말뚝 d) 말뚝지지중력식기초이다. 모든 케이스는 비배수전단강도 20kPa의 단일 점토층을 모사하였으며, 수치해석결과로부터 네 가지 케이스에 대한 p-y곡선과 P-승수를 산정하였다. 말뚝 수가 증가함에 따라 무리말뚝효과가 증가하였다. 말뚝지지중력식기초의 경우, P-승수가 무리말뚝과 상이한 경향을 보였다. 응력분포를 통해 거동의 차이를 비교하였고 말뚝지지중력식기초의 수평거동은 지표면과 매트 사이의 상호 작용이 상당한 영향을 미치는 것으로 나타났다.

This paper presents the results from three-dimensional finite element (FE) analysis undertaken to provide insight into the lateral behaviors of piled gravity base foundation (GBF) for offshore wind turbine. The piled GBF was originally developed to support the gravity based foundation in very soft clay soil. A GBF is supported by five piles in a cross arrangement to achieve additional vertical bearing capacity. This study considered four different cases including a) single pile, b) three-by-three group pile (with nine piles), c) cross-arrangement group pile (with five piles), and d) piled GBF. All the cases were installed in homogenous soft clay soil with undrained shear strength of 20 kPa. From the numerical results, p-y curves and thus P-multiplier was back-calculated. For the group pile cases, the group effect decreased with increasing the number of piles. Interestingly, for the piled GBF, the P-multipliers showed a unique trend, compared to the group pile cases. This study concluded that the global lateral behaviour of the piled GBF was influenced strongly by the interaction between GBF and contacted soil surface.

키워드

참고문헌

  1. Achmus, M., Kou, Y. S., and Abdel-Rahman, K. (2009), "Behavior of Monopile Foundations under Cyclic Lateral Load", Computers and Geotechnics, Vol.36, pp.725-735. https://doi.org/10.1016/j.compgeo.2008.12.003
  2. American Petroleum Institute (API) (2011), Geotechnical and Foundation Design Considerations, ANSI/API Recommended Practice 2GEO, 1st ed., Washington, D.C.
  3. Anastasopoulos, I. and Theofilou, M. (2015), "On the Development of a Hybrid Foundation for Offshore Wind Turbines", Frontiers in Offshore Geotechnics III, pp.687-704.
  4. Arshi, H. S. and Stone, K. J. L. (2012), "Increasing the Lateral Resistance of Offshore Monopole Foundations: Hybrid Monopole-Footing Foundation System", Proc. of the 3rd International Conference on Engineering project and production management, Brighton, pp.217-226.
  5. Arshi, H. S., Stone, K. J. L., Vaziri, M., Newson, T., EI-Marasi, M., Taylor, RN., and Goody, R. (2013), "Physical Model Testing of Hybrid Monopole-Footing Foundation System in Sand for Offshore Structures", Proc. of the 19th ICSMGE, Paris, pp.2307-2310.
  6. Brown, D. A., Reese, L. C., and O'Neil, M. W. (1987), "Behavior of a Large Scale Pile Group Subjected to Cyclic Lateral Loading", Journal of Geotech. Engrg., ASCE, Vol.113, No.11, pp.1326-1343. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:11(1326)
  7. Brown, D. A., Morrison, C., and Reese, L. C. (1988), "Lateral Load Behavior of Pile Group in Sand", Journal of Geotech. Eng, Vol.114, No.11, pp.1261-1276. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:11(1261)
  8. Byrne, B. W. and Houlsby, G. T. (2003), "Foundations for Offshore Wind Turbines", Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol.361, pp.2909-2930. https://doi.org/10.1098/rsta.2003.1286
  9. Choo, Y. W. and Kim, D. (2016), "Experimental Development of the p-y Relationship for Large-Diameter Offshore Monopiles in Sands: Centrifuge Tests", Journal of Geotechnical and Geoenvironmental Eng., Vol.142, No.1, 04015058. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001373
  10. Choo, Y. W., Seo, J. H., Kim, Y. N., Goo, J. M., and Kim, Y. (2016), "Numerical Studies on Piled Gravity Base Foundation for Offshore Wind Turbine", Marine Georesources and Geotechnology, Vol.34, No.8, pp.729-740. https://doi.org/10.1080/1064119X.2015.1080334
  11. Chung, J. H., Park, S. B., and Lee, S. (2008), "Evaluation of Piezocone Factors Applicable to Soft Ground around Siwha Lake by Statistical Analysis", Journal of Korean Geotechnical Society, Vol.24, No.4, pp.90-100.
  12. Dassault Systemes (2014), Abaqus 6.14 EF documentation. Rhode Island: Hibbitt, Karlsson & Sorensen, Inc.
  13. Det Norske Veritas (DNV) (2014), "Design of Offshore Wind Turbine Structures", DNV-OS-J101, Hovik, Norway.
  14. EWEA (2009), Wind Energy - The Facts. A Report by the European Wind Energy Association.
  15. Haiderali, A. and Madabhushi, G. (2013), "Evaluation of the p-y Method in the Design of Monopiles for Offshore Wind Turbines", OTC 24088.
  16. Houlsby, G. T. and Byrne, B. W. (2000), "Suction Caisson Foundations for Offshore Wind Turbines and Anemometer Masts", Wind Engineering, Vol.24, No.4, pp.249-255. https://doi.org/10.1260/0309524001495611
  17. Ilyas, T., Leung, C. F., Chow, Y. K., and Budi, S. S. (2004), "Centrifuge Model Study of Laterally Loaded Pile Groups in Clay", Journal of Geotechnical and Geoenvironmental Eng, ASCE, Vol.130 No.3, pp.274-283. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(274)
  18. KICT (Korea Institute of Civil Engineering and Building Technology) (2013), Development of Hybrid Substructure Systems for Offshore Wind Power, 1st year research report, MSIP, Korea.
  19. Kim, D. J., Choo, Y. W., Lee, J. S., Kim, D. S., Jee, S. H., Choi, J., Lee, M. S., and Park, Y. H. (2013), "Numerical Analysis of Cluster and Monopod Suction Bucket Foundation", Proc. of the ASME 2013 32nd Int. Conf. on Ocean, Offshore and Arctic Eng., Nantes, France.
  20. Kim, Y. H., Jeong, S. S., Kim, J. H., and Lee, Y. G. (2007), "Effects of Lateral Pile Rigidity of Offshore Drilled Shafts by Developing p-y Curves in Marine Clay", Journal of Korean Geotechnical Society, Vol.23, No.6, pp.37-51.
  21. Lee, S. H., Kim, S. R., Lee, J. H., and Jeong, M. K. (2011), "Evaluation of p-y Curves of Piles in Soft Deposits by 3-Dimensional Numerical Analysis", Journal of Korean Geotechnical Society, Vol.27, No.7, pp.47-57. https://doi.org/10.7843/kgs.2011.27.7.047
  22. Kwag, D., Oh, M., Kwon, O., and Bang, S. (2013), "Field Installation Tests of Monopod Suction Pile and Tripod Suction Buckets", Proc the ASME 2013 32nd Int Conf on Ocean, Offshore and Arctic Eng, OMAE2013, Nantes, France.
  23. Matlock, H. (1970), "Correlations for Design of Laterally Loaded Piles in Soft Clay", Presented at the Second Annual Offshore Technology Conference, Houston, Texas, Vol.1, pp.577-588.
  24. McClelland, B. and Focht Jr, J. A. (1956), "Soil Modulus for Laterally Loaded Piles", American Society of Civil Engineers - Proceedings - Journal of the Soil Mechanics and Foundations Division, Vol.82.
  25. McVay, M., Casper, R., and Shang, T. I. (1995), "Lateral Response of Three-Row Groups in Loose to Dense Sands at 3D and 5D Pile Spacing", Journal of Geotechnical Engineering, Vol.121, pp.436-441. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(436)
  26. McVay, M., Zhang, L., Molnit, T., and Lai, P. (1998), "Centrifuge Testing of Large Laterally Loaded Pile Groups in Sands", Journal of Geotechnical and Geoenvironmental Eng., Vol.124, pp.1016-1026. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:10(1016)
  27. O'Neill, M. W. and Murchison, J. M. (1983), "An Evaluation of p-y Relationships in Sands", Research Report No. GT-DF02-83. University of Houston, Department of Civil Engineering, May 1983.
  28. Park, K. (2001), Estimation of Undrained Shear Strength of Inchon Marine Clay by Piezocone Penetration Test, Ms. Thesis, Inha University, Incheon, pp.45.
  29. Reese, L. C. and Matlock, H. (1956), "Non-dimensional Solutions for Laterally Loaded Piles with Soil Modulus Assumed Proportional to Depth", Proc. VIII Texas Conf. on Soil Mech. and Foundation Eng., Bureau of Engineering Research, Texas.
  30. Reese, L. C. and Junius D. A. (1977), Drilled Shaft Design and Construction Manual, U. S. Department of Transportation, Federal Highway Administration, Vol.2.
  31. Rollins, K. M., Peterson, K. T., and Weaver, T. J. (1998), "Lateral Load Behavior of Full-Scale Pile Group in Clay", Journal of Geotechnical and Geoenvironmental Eng., ASCE, Vol.132, No.10, pp.468-478.
  32. Shin, Y., Langford, T., Cho, K., Park, J., and Park, J. (2014), "Design of Composite Pile Foundations for Offshore Wind Turbines", Proc. the Twenty-fourth Int. Ocean and Polar Eng. Conf., Busan, Korea.