DOI QR코드

DOI QR Code

Wnt/β-Catenin 신호조절에 의한 백악질 형성의 이해

Understanding of Cementum Formation by the Wnt/β-Catenin Signaling

  • 유영재 (전북대학교 치의학전문대학원 구강해부조직학교실) ;
  • 양진영 (대전과학기술대학교 치위생과)
  • You, Young-Jae (Department of Oral Anatomy and Histology, School of Dentistry, Chonbuk National University) ;
  • Yang, Jin-Young (Department of Dental Hygiene, Daejeon Institute of Science and Technology)
  • 투고 : 2016.10.25
  • 심사 : 2016.11.26
  • 발행 : 2016.12.31

초록

Periodontal disease is one of the major dental diseases. Currently, various methods are used for healing and successful regeneration of periodontal tissue damaged by periodontal disease. The periodontal ligament and alveolar bone have received considerable interest for use in periodontal tissue regeneration and induction. However, as the functions of the factors required for tooth attachment and key regulatory factors for periodontal tissue regeneration in the cementum have recently been identified, interest in cementum formation and regeneration has increased. Dental cementum forms in the late phase of tooth development because of the reciprocal regulatory interaction between cervical loop epithelial cells and surrounding mesenchymal cells, which is regulated by various gene signaling networks. Many attempts have been made to understand the regulatory factors and cellular and molecular mechanisms associated with new cementum formation. In this paper, we reviewed the study outcomes to date on the regulatory factors that induce cementum formation and regeneration, focusing on understanding the roles and functions of Wnt signaling in the regulation of cementum formation. In addition, we aimed to obtain information on the useful reciprocal regulatory factors that mediate cementum formation and regeneration through a series of molecular mechanisms.

키워드

참고문헌

  1. Bosshardt DD, Schroeder HE: Cementogenesis reviewed: a comparison between human premolars and rodent molars. Anat Rec 245: 267-292, 1996. https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<267::AID-AR12>3.0.CO;2-N
  2. Grzesik WJ, Narayanan AS: Cementum and periodontal wound healing and regeneration. Crit Rev Oral Biol Med 13: 474-484, 2002. https://doi.org/10.1177/154411130201300605
  3. Bae SS, Ku Y: The prevalence of enamel projection on molar teeth extracted from dental patients. J Dent Hyg Sci 7: 207-211, 2007.
  4. Arzate H, Zeichner-David M, Mercado-Celis G: Cementum proteins: role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontol 2000 67: 211-233, 2015. https://doi.org/10.1111/prd.12062
  5. Rooker SM, Liu B, Helms JA: Role of Wnt signaling in the biology of the periodontium. Dev Dyn 239: 140-147, 2010.
  6. Duan P, Bonewald LF: The role of the Wnt/${\beta}$-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 77: 23-29, 2016. https://doi.org/10.1016/j.biocel.2016.05.015
  7. Popowics T, Foster BL, Swanson EC, Fong H, Somerman MJ: Defining the roots of cementum formation. Cells Tissues Organs 181: 248-257, 2005. https://doi.org/10.1159/000091386
  8. Chatterjee S: Cementogenesis and its significance. Ann Dent Res 2: 51-56, 2012.
  9. Bosshardt D, Schroeder HE: Evidence for rapid multipolar and slow unipolar production of human cellular and acellular cementum matrix with intrinsic fibers. J Clin Periodontol 17: 663-668, 1990. https://doi.org/10.1111/j.1600-051X.1990.tb01690.x
  10. Gao J, Symons AL, Haase H, Bartold PM: Should cementoblasts express alkaline phosphatase activity? Preliminary study of rat cementoblasts in vitro. J Periodontol 70: 951-959, 1999. https://doi.org/10.1902/jop.1999.70.9.951
  11. Foster BL, Nagatomo KJ, Bamashmous SO, et al.: The progressive ankylosis protein regulates cementum apposition and extracellular matrix composition. Cells Tissues Organs 194: 382-405, 2011. https://doi.org/10.1159/000323457
  12. Ten Cate AR: The development of the periodontium--a largely ectomesenchymally derived unit. Periodontol 2000 13: 9-19, 1997. https://doi.org/10.1111/j.1600-0757.1997.tb00093.x
  13. Terling C, Heymann R, Rozell B, Obrink B, Wroblewski J: Dynamic expression of E-cadherin in ameloblasts and cementoblasts in mice. Eur J Oral Sci 106 Suppl 1:137-142, 1998. https://doi.org/10.1111/j.1600-0722.1998.tb02166.x
  14. Jung HS, Lee DS, Lee JH, et al.: Directing the differentiation of human dental follicle cells into cementoblasts and/or osteoblasts by a combination of HERS and pulp cells. J Mol Histol 42: 227-235, 2011. https://doi.org/10.1007/s10735-011-9327-5
  15. Bruckner RJ, Rickles NH, Porter DR: Hypophosphatasia with premature shedding of teeth and aplasia of cementum. Oral Surg Oral Med Oral Pathol 15: 1351-1369, 1962. https://doi.org/10.1016/0030-4220(62)90356-0
  16. Beertsen W, VandenBos T, Everts V: Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res 78: 1221-1229, 1999. https://doi.org/10.1177/00220345990780060501
  17. Grzesik WJ, Cheng H, Oh JS, et al.: Cementum-forming cells are phenotypically distinct from bone-forming cells. J Bone Miner Res 15: 52-59, 2000. https://doi.org/10.1359/jbmr.2000.15.1.52
  18. Fisher LW, Fedarko NS: Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44 Suppl 1: 33-40, 2003. https://doi.org/10.1080/03008200390152061
  19. Narayanan AS, Ikezawa K, Wu D, Pitaru S: Cementum specific components which influence periodontal connective tissue cells. Connect Tissue Res 33: 19-21, 1995. https://doi.org/10.3109/03008209509016976
  20. Saygin NE, Giannobile WV, Somerman MJ: Molecular and cell biology of cementum. Periodontol 2000 24: 73-98, 2000. https://doi.org/10.1034/j.1600-0757.2000.2240105.x
  21. McKee MD, Zalzal S, Nanci A: Extracellular matrix in tooth cementum and mantle dentin: localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 245: 293-312, 1996. https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<293::AID-AR13>3.0.CO;2-K
  22. Saygin NE, Tokiyasu Y, Giannobile WV, Somerman MJ: Growth factors regulate expression of mineral associated genes in cementoblasts. J Periodontol 71: 1591-1600, 2000. https://doi.org/10.1902/jop.2000.71.10.1591
  23. Bae HS, Cho YS: The effect of over-expression and inactivation of nuclear factor I-C on the dentin matrix gene expression of MDPC-23 odontoblasts. J Dent Hyg Sci 9: 427-433, 2009.
  24. Worapamorn W, Li H, Pujic Z, Xiao Y, Young WG, Bartold PM: Expression and distribution of cell-surface proteoglycans in the normal Lewis rat molar periodontium. J Periodontal Res 35: 214-224, 2000. https://doi.org/10.1034/j.1600-0765.2000.035004214.x
  25. Chen J, Sasaguri K, Sodek J, Aufdemorte TB, Jiang H, Thomas HF: Enamel epithelium expresses bone sialoprotein (BSP). Eur J Oral Sci 106 Suppl 1: 331-336, 1998. https://doi.org/10.1111/j.1600-0722.1998.tb02194.x
  26. Choi JM, Moon DH, Lee JH: Expression of dynamin II in ameloblast during mouse tooth development. J Dent Hyg Sci 12: 486-492, 2012.
  27. Thesleff I, Tummers M: Tooth organogenesis and regeneration. Harvard Stem Cell Institute, Cambridge, 2008.
  28. Cadigan KM, Liu YI: Wnt signaling: complexity at the surface. J Cell Sci 119: 395-402, 2006. https://doi.org/10.1242/jcs.02826
  29. Huelsken J, Behrens J: The Wnt signalling pathway. J Cell Sci 115: 3977-3978, 2002. https://doi.org/10.1242/jcs.00089
  30. Veeman MT, Axelrod JD, Moon RT: A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5: 367-377, 2003. https://doi.org/10.1016/S1534-5807(03)00266-1
  31. Behrens J, von Kries JP, Kühl M, et al.: Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382: 638-642, 1996. https://doi.org/10.1038/382638a0
  32. Hämmerlein A, Weiske J, Huber O: A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/beta-catenin complex. Cell Mol Life Sci 62: 606-618, 2005. https://doi.org/10.1007/s00018-005-4507-7
  33. Clevers H, Nusse R: Wnt/${\beta}$-catenin signaling and disease. Cell 149: 1192-1205, 2012. https://doi.org/10.1016/j.cell.2012.05.012
  34. Willert K, Brink M, Wodarz A, Varmus H, Nusse R: Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J 16: 3089-3096, 1997. https://doi.org/10.1093/emboj/16.11.3089
  35. Niida A, Hiroko T, Kasai M, et al.: DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 23: 8520-8526, 2004. https://doi.org/10.1038/sj.onc.1207892
  36. Cong F, Varmus H: Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci U S A 101: 2882-2887, 2004. https://doi.org/10.1073/pnas.0307344101
  37. Wang B, Li H, Liu Y, et al.: Expression patterns of Wnt/${\beta}$-catenin signaling molecules during human tooth development. J Mol Histol 45: 487-496, 2014. https://doi.org/10.1007/s10735-014-9572-5
  38. Han P, Wu C, Chang J, Xiao Y: The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/${\beta}$-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials 33: 6370-6379, 2012. https://doi.org/10.1016/j.biomaterials.2012.05.061
  39. Zhang R, Yang G, Wu X, Xie J, Yang X, Li T: Disruption of Wnt/${\beta}$-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int J Biol Sci 9: 228-236, 2013. https://doi.org/10.7150/ijbs.5476
  40. Nemoto E, Koshikawa Y, Kanaya S, et al.: Wnt signaling inhibits cementoblast differentiation and promotes proliferation. Bone 44: 805-812, 2009. https://doi.org/10.1016/j.bone.2008.12.029
  41. Han P, Ivanovski S, Crawford R, Xiao Y: Activation of the canonical Wnt signaling pathway induces cementum regeneration. J Bone Miner Res 30: 1160-1174, 2015. https://doi.org/10.1002/jbmr.2445
  42. Lim WH, Liu B, Cheng D, Williams BO, Mah SJ, Helms JA: Wnt signaling regulates homeostasis of the periodontal ligament. J Periodontal Res 49: 751-759, 2014. https://doi.org/10.1111/jre.12158
  43. Bae CH, Lee JY, Kim TH, et al.: Excessive Wnt/${\beta}$-catenin signaling disturbs tooth-root formation. J Periodontal Res 48: 405-410, 2013. https://doi.org/10.1111/jre.12018
  44. Jager A, Gotz W, Lossdorfer S, Rath-Deschner B: Localization of SOST/sclerostin in cementocytes in vivo and in mineralizing periodontal ligament cells in vitro. J Periodontal Res 45: 246-254, 2010. https://doi.org/10.1111/j.1600-0765.2009.01227.x
  45. Kuchler U, Schwarze UY, Dobsak T, et al.: Dental and periodontal phenotype in sclerostin knockout mice. Int J Oral Sci 6: 70-76, 2014. https://doi.org/10.1038/ijos.2014.12
  46. Cao Z, Liu R, Zhang H, et al.: Osterix controls cementoblast differentiation through downregulation of Wnt-signaling via enhancing DKK1 expression. Int J Biol Sci 11: 335-344, 2015. https://doi.org/10.7150/ijbs.10874
  47. Foster BL, Popowics TE, Fong HK, Somerman MJ: Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 78: 47-126, 2007. https://doi.org/10.1016/S0070-2153(06)78003-6
  48. Nemoto E, Sakisaka Y, Tsuchiya M, et al.: Wnt3a signaling induces murine dental follicle cells to differentiate into cementoblastic/osteoblastic cells via an osterix-dependent pathway. J Periodontal Res 51: 164-174, 2016. https://doi.org/10.1111/jre.12294
  49. Silverio KG, Davidson KC, James RG, et al.: Wnt/${\beta}$-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells. J Periodontal Res 47: 309-319, 2012. https://doi.org/10.1111/j.1600-0765.2011.01433.x
  50. Kim TH, Lee JY, Baek JA, et al.: Constitutive stabilization of ${\beta}$-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys Res Commun 412: 549-555, 2011. https://doi.org/10.1016/j.bbrc.2011.07.116
  51. Yin X, Li J, Salmon B, et al.: Wnt signaling and its contribution to craniofacial tissue homeostasis. J Dent Res 94: 1487-1494, 2015. https://doi.org/10.1177/0022034515599772
  52. Yang J, Wang SK, Choi M, et al.: Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Mol Genet Genomic Med 3: 40-58, 2015. https://doi.org/10.1002/mgg3.111
  53. Sarkar L, Sharpe PT: Expression of Wnt signalling pathway genes during tooth development. Mech Dev 85: 197-200, 1999. https://doi.org/10.1016/S0925-4773(99)00095-7
  54. Shibata S, Dias RA, Hashimoto-Uoshima M, Abe T, Yanagishita M: Immunohistochemical localization of syndecan-1 in the dental follicle of postnatal mouse teeth. J Periodontol 78: 1322-1328, 2007. https://doi.org/10.1902/jop.2007.060497
  55. Dias RA, Shibata S, Hashimoto-Uoshima M, Podyma-Inoue KA, Ishikawa I, Yanagishita M: Syndecan-1 expression during the formation of junctional epithelium. J Periodontol 76: 696-704, 2005. https://doi.org/10.1902/jop.2005.76.5.696
  56. Lin M, Li L, Liu C, et al.: Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth. Dev Dyn 240: 432-440, 2011. https://doi.org/10.1002/dvdy.22550
  57. Sakisaka Y, Tsuchiya M, Nakamura T, Tamura M, Shimauchi H, Nemoto E: Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells. Exp Cell Res 336: 85-93, 2015. https://doi.org/10.1016/j.yexcr.2015.06.013
  58. Xiang L, Chen M, He L, et al.: Wnt5a regulates dental follicle stem/progenitor cells of the periodontium. Stem Cell Res Ther 5: 135, 2014. https://doi.org/10.1186/scrt525
  59. Yang Z, Hai B, Qin L, et al.: Cessation of epithelial Bmp signaling switches the differentiation of crown epithelia to the root lineage in a ${\beta}$-catenin-dependent manner. Mol Cell Biol 33: 4732-4744, 2013. https://doi.org/10.1128/MCB.00456-13
  60. Ruspita I, Miyoshi K, Muto T, Abe K, Horiguchi T, Noma T: Sp6 downregulation of follistatin gene expression in ameloblasts. J Med Invest 55: 87-98, 2008. https://doi.org/10.2152/jmi.55.87
  61. Aurrekoetxea M, Irastorza I, García-Gallastegui P, et al.: Wnt/${\beta}$-Catenin regulates the activity of epiprofin/Sp6, SHH, FGF, and BMP to coordinate the stages of odontogenesis. Front Cell Dev Biol 4: 25, 2016.