DOI QR코드

DOI QR Code

Preparation of Active Cu/ZnO-based Catalysts for Methanol Synthesis

메탄올 생산용 고활성 Cu/ZnO 촉매 합성방법

  • 정천우 (한양대학교 화학공학과) ;
  • 서영웅 (한양대학교 화학공학과)
  • Received : 2016.11.21
  • Accepted : 2016.11.23
  • Published : 2016.12.10

Abstract

In recent years, methanol has attracted much attention since it can be cleanly manufactured by the combined use of atmospheric $CO_2$ recycling and water splitting via renewable energy. For the concept of "methanol economy", an active methanol synthesis catalyst should be prepared in a sophisticated manner rather than by empirical optimization approach. Even though Cu/ZnO-based catalysts prepared by coprecipitation are well known and have been extensively investigated even for a century, fundamental understanding on the precipitation chemistry and catalyst nanostructure has recently been achieved due to complexity of the necessary preparation steps such as precipitation, ageing, filtering, washing, drying, calcination and reduction. Herein we review the recent reports regarding the effects of various synthesis variables in each step on the physicochemical properties of materials in precursor, calcined and reduced states. The relationship between these characteristics and the catalytic performance will also be discussed because many variables in each step strongly influence the final catalytic activity, called "chemical memory". All discussion focuses on how to prepare a highly active Cu/ZnO-based catalyst for methanol synthesis. Furthermore, the preparation strategy we deliver here would be utilized for designing other coprecipitation-derived supported metal or metal oxide catalysts.

대기 중 이산화탄소의 재활용 기술과 재생에너지에 의한 물 분해 기술의 접목이 최근 가능해지면서 메탄올은 많은 관심을 받고 있다. 경제성이 유리하도록 메탄올 경제를 실현하기 위해서는 고활성 메탄올 합성 촉매를 제조하여야 하며, 이를 위해서는 논리적인 접근법이 필요하다. 공침법을 통해 제조하는 Cu/ZnO 기반의 촉매는 침전, 숙성, 여과, 세척, 건조, 소성, 환원 등의 복잡한 단계로 제조되며, 100년의 역사를 가지고 있음에도 불구하고 최근에야 침전 화학과 촉매 나노구조에 대한 기초적인 이해가 이루어지고 있다. 이에 본 고에서는 단계별로 합성 변수가 침전, 소성, 환원상태 물질의 물성에 미치는 영향에 대한 최근 결과들을 리뷰하고, 화학적 기억 효과라고 부르는 이들 물성들과 최종 촉매의 활성 사이의 관련성을 논의하였다. 제조 변수별 설명은 메탄올 합성을 위한 Cu/ZnO 기반 고활성 촉매를 제조하는 방법에 초점이 맞추어져 있다. 논의된 합성 전략은 공침법을 기반으로 하는 타 금속 또는 금속 산화물 담지 촉매의 제조에 활용 가능할 것으로 판단된다.

Keywords

References

  1. G. A. Olah, A. Goeppert, and G. K. S. Prakash, Beyond Oil and Gas: The Methanol Economy, 2nd ed., 1-10, Wiley-VCH, Weinheim, Germany (2009).
  2. G. A. Olah, Beyond oil and gas: The methanol economy, Angew. Chem. Int. Ed., 44, 2636-2639 (2005). https://doi.org/10.1002/anie.200462121
  3. G. A. Olah, A. Goeppert, and G. K. S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem., 74, 487-498 (2009). https://doi.org/10.1021/jo801260f
  4. Methanol economy, https://en.wikipedia.org/wiki/Methanol_economy, 14th November 2016.
  5. J. Ott, V. Gronemann, F. Pontzen, E. Fiedler, G. Grossmann, D. B. Kersebohm, G. Weiss, and C. Witte, Ullmann's Encyclopedia of Industrial Chemistry, Methanol, 1-27, Wiley-VCH, Weinheim, Germany (2012).
  6. R. Schlogl, The revolution continues: Energiewende 2.0, Angew. Chem. Int. Ed., 54, 4436-4439 (2015). https://doi.org/10.1002/anie.201405876
  7. X.-M. Liu, G. Q. Lu, Z.-F. Yan, and J. Beltramini, Recent advances in catalysts for methanol synthesis via hydrogenation of CO and $CO_2$, Ind. Eng. Chem. Res., 42, 6518-6530 (2003). https://doi.org/10.1021/ie020979s
  8. J.-P. Lange, Methanol synthesis: a short review of technology improvements, Catal. Today, 64, 3-8 (2001). https://doi.org/10.1016/S0920-5861(00)00503-4
  9. S. G. Jadhav, P. D. Vaidya, B. M. Bhanage, and J. B. Joshi, Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies, Chem. Eng. Res. Des., 92, 2557-2567 (2014). https://doi.org/10.1016/j.cherd.2014.03.005
  10. W. Wang, S. Wang, X. Ma, and J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev., 40, 3703-3727 (2011). https://doi.org/10.1039/c1cs15008a
  11. E. E. Barton, D. M. Rampulla, and A. B. Bocarsly, Selective solar- driven reduction of $CO_2$ to methanol using a catalyzed p-GaP based photoelectrochemical Cell, J. Am. Chem. Soc., 130, 6342-6344 (2008). https://doi.org/10.1021/ja0776327
  12. W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, and E. Fujita, $CO_2$ hydrogenation to formate and methanol as an alternative to photo- and electrochemical $CO_2$ reduction, Chem. Rev., 115, 12936-12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197
  13. J. Zhang, Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies, 1-45, CRC Press, USA (2016).
  14. D. Nazimek and B. Czech, Artificial photosynthesis-$CO_2$ towards methanol, IOP Conf. Ser.: Mater. Sci. Eng., 19, 012010 (2010).
  15. M. Watanabe, Photosynthesis of methanol and methane from $CO_2$ and $H_2O$ molecules on a ZnO surface, Surf. Sci. Lett., 279, L236-L242 (1992).
  16. K. P. de Jong, Synthesis of Solid Catalysts, 329-351, Wiley-VCH, Weinheim (2009).
  17. G. Lormand, Industrial production of synthetic methanol, Ind. Eng. Chem., 17, 430-432 (1925). https://doi.org/10.1021/ie50184a034
  18. Per K. Frolich, M. R. Fenske, and D. Quiggle, Catalysts for the formation of alcohols from carbon monoxide and hydrogen, Ind. Eng. Chem., 20, 694-698 (1928). https://doi.org/10.1021/ie50223a008
  19. M. R. Fenske and Per K. Frolich, Catalysts for the formation of alcohols from carbon monoxide and hydrogen, Ind. Eng. Chem., 21, 1052-1055 (1929). https://doi.org/10.1021/ie50239a019
  20. D. Cornthwaite, Methanol synthesis catalyst, US Patent 3,923,694 (1975).
  21. B. Bems, M. Schur, A. Dassenoy, H. Junkes, D. Herein, and R. Schlogl, Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates, Chem. Eur. J., 9, 2039-2052 (2003). https://doi.org/10.1002/chem.200204122
  22. M. Behrens, Meso- and nano-structuring of industrial Cu/ZnO/($Al_2O_3$) catalysts, J. Catal., 267, 24-29 (2009). https://doi.org/10.1016/j.jcat.2009.07.009
  23. G. J. Millar, I. H. Holm, P. J. R. Uwins, and J. Drennan, Characterization of precursors to methanol synthesis catalysts Cu/ZnO system, J. Chem. Soc., Faraday Trans., 94, 593-600 (1998). https://doi.org/10.1039/a703954i
  24. G. Ertl, H. Knozinger, F. Schuth, and J. Weitkamp, Handbook of Heterogeneous Catalysis, 100-119, Wiley-VCH, Weinheim, Germany (2008).
  25. J.-L. Li and T. Inui, Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures, Appl. Catal. A, 137, 105-117 (1996). https://doi.org/10.1016/0926-860X(95)00284-7
  26. C. Baltes, S. Vukojevic, and F. Schuth, Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/$Al_2O_3$ catalysts for methanol synthesis, J. Catal., 258, 334-344 (2008). https://doi.org/10.1016/j.jcat.2008.07.004
  27. E. Frei, A. Schaadt, T. Ludwig, H. Hillebrecht, and I. Krossing, The influence of the precipitation/ageing temperature on a Cu/ZnO/$ZrO_2$ catalyst for methanol synthesis from $H_2$ and $CO_2$, ChemCatChem, 6, 1721-1730 (2014). https://doi.org/10.1002/cctc.201300665
  28. M. Behrens, D. Brennecke, F. Girgsdies, S. Kissner, A. Trunschke, N. Nasrudin, S. Zakaria, N. F. Idris, S. B. A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler, and R. Schlogl, Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/$Al_2O_3$ catalysts investigated by titration experiments, Appl. Catal. A, 392, 93-102 (2011). https://doi.org/10.1016/j.apcata.2010.10.031
  29. C. C. Perry and K. L. Shafran, The systematic study of aluminium speciation in medium concentrated aqueous solutions, J. Inorg. Biochem., 87, 115-124 (2001). https://doi.org/10.1016/S0162-0134(01)00326-9
  30. A. C. Vermeulen, J. W. Geus, R. J. Stol, and P. L. de Bruyn, Hydrolysis-precipitation studies of aluminum (III) solutions. 1. Titration of acidified aluminum nitrate solutions, J. Colloid Interface Sci., 51, 449-458 (1975). https://doi.org/10.1016/0021-9797(75)90142-3
  31. B. C. Faust, W. B. Labiosa, K. H. Dai, J. S. MacFall, B. A. Browne, A. A. Ribeiro, and D. D. Richter, Speciation of aqueous mononuclear Al(III)-hydroxo and other Al(III) complexes at concentrations of geochemical relevance by aluminum-27 nuclear magnetic resonance spectroscopy, Geochim. Cosmochim. Acta, 59, 2651-2661 (1995). https://doi.org/10.1016/0016-7037(95)00162-S
  32. S. L. Wang, M. K. Wang, and Y. M. Tzou, Effect of temperatures on formation and transformation of hydrolytic aluminum in aqueous solutions, Colloids Surf. A, 231, 143-157 (2003). https://doi.org/10.1016/j.colsurfa.2003.08.018
  33. M. Behrens, I. Kasatkin, S. Kuhl, and G. Weinberg, Phase-pure Cu,Zn,Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/$Al_2O_3$ catalysts, Chem. Mater., 22, 386-397 (2010). https://doi.org/10.1021/cm9029165
  34. C. Jeong, J. Park, J. W. Bae, and Y.-W. Suh, Comparison of normal and reverse precipitation methods in the preparation of Cu/ZnO/$Al_2O_3$ catalysts for hydrogenolysis of butyl butyrate, Catal. Commun., 54, 1-5 (2014). https://doi.org/10.1016/j.catcom.2014.05.005
  35. C. Busetto, G. Del Piero, and G. Manara, Catalysts for low-temperature methanol synthesis: Preparation of Cu-Zn-Al mixed oxides via hydrotalcite-like precursors, Chem. Mater., 22, 386-397 (2010). https://doi.org/10.1021/cm9029165
  36. C. Jeong, M. J. Hyun, and Y.-W. Suh, Activity of coprecipitated CuO/ZnO catalysts in the decomposition of dimethylhexane-1,6-dicarbamate, Catal. Commun., 70, 34-39 (2015). https://doi.org/10.1016/j.catcom.2015.07.011
  37. M. Behrens, F. Girgsdies, A. Trunschke, and R. Schlogl, Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture, Eur. J. Inorg. Chem., 2009, 1347-1357 (2009). https://doi.org/10.1002/ejic.200801216
  38. M. J. Hyun, M. Shin, Y. J. Kim, and Y.-W. Suh, Phosgene-free decomposition of dimethylhexane-1,6-dicarbamate over Zn.O, Res. Chem. Intermed., 42, 57-70 (2016). https://doi.org/10.1007/s11164-015-2224-x
  39. K. F. Ortega, A. Huttner, J. Heese, and M. Berhens, Effect of Ni incorporation into malachite precursors on the catalytic properties of the resulting nanostructured CuO/NiO catalysts, Eur. J. Inorg. Chem., 2016, 2063-2071 (2016). https://doi.org/10.1002/ejic.201501425
  40. D. M. Whittle, A. A. Mirzaei, J. S. J. Hargreaves, R. W. Joyner, C. J. Kiely, S. H. Taylor, and G. J. Hutchings, Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity, Phys. Chem. Chem. Phys., 4, 5915-5920 (2002). https://doi.org/10.1039/b207691h
  41. S. Zander, B. Seidlhofer, and M. Behrens, In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu,Zn hydroxycarbonates - consequences for the preparation of Cu/ZnO catalysts, Dalton Trans., 41, 13413-13422 (2012). https://doi.org/10.1039/c2dt31236k
  42. T. E. Gier, X. Bu, S.-L. Wang, and G. D. Stucky, $Na_2Zn_3(CO_3)_4{\cdot}3H_2O$, a microporous sodium zincocarbonate with a diamond-type tetrahedral-triangular topology, J. Am. Chem. Soc., 118, 3039-3040 (1996). https://doi.org/10.1021/ja950911m
  43. C. Jeong and Y.-W. Suh, Role of $ZrO_2$ in Cu/ZnO/$ZrO_2$ catalysts prepared from the precipitated Cu/Zn/Zr precursors, Catal. Today, 265, 254-263 (2016). https://doi.org/10.1016/j.cattod.2015.07.053
  44. M. Behrens, S. Zander, P. Kurr, N. Jacobsen, J. Senker, G. Koch, T. Ressler, R. W. Fischer, and R. Schlogl, Performance improvement of nanocatalysts by promoter-induced defects in the support material: Methanol synthesis over Cu/ZnO:Al, J. Am. Chem. Soc., 135, 6061-6068 (2013). https://doi.org/10.1021/ja310456f
  45. J. Schumann, T. Lunkenbein, A. Tarasov, N. Thomas, R. Schlogl, and M. Behrens, Synthesis and Characterisation of a Highly Active Cu/ZnO:Al Catalyst, ChemCatChem, 6, 2889-2897 (2014). https://doi.org/10.1002/cctc.201402278
  46. J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M. Consuelo, A. Galvan, R. Schlogl, and M. Behrens, Promoting strong metal support interaction: Doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts, ACS Catal., 5, 3260-3270 (2015). https://doi.org/10.1021/acscatal.5b00188
  47. Y.-W. Suh and H.-K. Rhee, Optimum washing conditions for the preparation of Cu/ZnO/$ZrO_2$ for methanol synthesis from CO hydrogenation:Effects of residual sodium, Korean J. Chem. Eng., 19, 17-19 (2002). https://doi.org/10.1007/BF02706869
  48. S. Kuhl, A. Tarasov, S. Zander, I. Kasatkin, and M. Behrens, Cu-Based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound: A microstructural, thermoanalytical, and in situ XAS study, Chem. Eur. J., 20, 3782-3792 (2014). https://doi.org/10.1002/chem.201302599
  49. J. Schumann, A. Tarasov, N. Thomas, R. Schlogl, and M. Behrens, Cu,Zn-based catalysts for methanol synthesis: On the effect of calcination conditions and the part of residual carbonates, Appl. Catal. A, 516, 117-126 (2016). https://doi.org/10.1016/j.apcata.2016.01.037
  50. A. Tarasov, J. Schumann, F. Girgsdies, N. Thomas, and M. Behrens, Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts, Thermochim. Acta, 591, 1-9 (2014). https://doi.org/10.1016/j.tca.2014.04.025
  51. G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, F. Cioci, and R. Lavecchia, Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction, Appl. Catal. A, 137, 327-348 (1996). https://doi.org/10.1016/0926-860X(95)00311-8
  52. M. M. Günter, T. Ressler, R. E. Jentoft, and B. Bems, Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy, J. Catal., 203, 133-149 (2001). https://doi.org/10.1006/jcat.2001.3322
  53. T. van Herwijnen and W. A. de Jong, Brass formation in a copper/zinc oxide CO shift catalyst, J. Catal., 34, 209-214 (1974). https://doi.org/10.1016/0021-9517(74)90030-X
  54. M. S. Spencer, The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction, Top. Catal., 8, 259-266 (1999). https://doi.org/10.1023/A:1019181715731
  55. T. Kandemir, F. Girgsdies, T. C. Hansen, K.-D. Liss, I. Kasatkin, E. L. Kunkes, G. Wowsnick, N. Jacobsen, R. Schlogl, and M. Behrens, In situ study of catalytic processes: Neutron diffraction of a methanol synthesis catalyst at industrially relevant pressure, Angew. Chem. Int. Ed., 52, 5166-5170 (2013). https://doi.org/10.1002/anie.201209539
  56. J.-D. Grunwaldt, A. M. Molenbroek, N.-Y. Topsoe, H. Topsoe, and B. S. Clausen, In situ investigations of structural changes in Cu/ZnO catalysts, J. Catal., 194, 452-460 (2000). https://doi.org/10.1006/jcat.2000.2930
  57. P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, and H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals, Science, 295, 2053-2055 (2002). https://doi.org/10.1126/science.1069325
  58. P. C. K. Vesborg, I. Chorkendorff, I. Knudsen, O. Balmes, J. Nerlov, A. M. Molenbroek, B. S. Clausen, and S. Helveg, Transient behavior of Cu/ZnO-based methanol synthesis catalysts, J. Catal., 262, 65-72 (2009). https://doi.org/10.1016/j.jcat.2008.11.028
  59. T. Lunkenbein, J. Schumann, M. Behrens, R. Schlogl, and M. G. Willinger, Formation of a ZnO overlayer in industrial Cu/ZnO/$Al_2O_3$ catalysts induced by strong metal-support interactions, Angew. Chem. Int. Ed., 54, 4544-4548 (2015). https://doi.org/10.1002/anie.201411581
  60. M. B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens, R. Schlogl, M. Muhler, and O. Hinrichsen, Counting of oxygen defects versus metal surface sites in methanol synthesis catalysts by different probe molecules, Angew. Chem. Int. Ed., 53, 7043-7047 (2014). https://doi.org/10.1002/anie.201400575
  61. S. Kuld, C. Conradsen, P. G. Moses, I. Chorkendorff, and J. Sehested, Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst, Angew. Chem. Int. Ed., 53, 5941-5945 (2014). https://doi.org/10.1002/anie.201311073

Cited by

  1. Effects of Al3+ precipitation onto primitive amorphous Cu-Zn precipitate on methanol synthesis over Cu/ZnO/Al2O3 catalyst vol.36, pp.2, 2019, https://doi.org/10.1007/s11814-018-0186-6
  2. Effect of Water Layer in a Microreactor on the Low-Temperature Synthesis of High-Activity Cu/ZnO Catalysts vol.58, pp.38, 2016, https://doi.org/10.1021/acs.iecr.9b03122
  3. Formation of Effective Copper-Based Catalysts of Methanol Synthesis vol.61, pp.6, 2020, https://doi.org/10.1134/s0023158420060087