DOI QR코드

DOI QR Code

NH3 and H2S Removal Characteristics on Spherical Carbons: Synergistic Effect between Activated Carbon and Zeolite Composites

  • Ye, Shu (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • 투고 : 2015.10.08
  • 심사 : 2016.11.14
  • 발행 : 2016.12.27

초록

In this study, we used activated carbon(AC) as a carbon source, along with zeolite, to prepare spherical carbons using sucrose, starch and phenolic resin(PR) as binder material. The physicochemical characteristics of the three samples(AZ4P, AZ6P and AZ8P) were examined by BET, XRD, SEM, EDX, $H_2S/NH_3$ gas adsorption, compressive strength and ignition test techniques. Through comparative analysis of the compressive strength and ignition test results the AZ8P sample was found to have the best hardness and the highest temperature resistance capacity. After activation, the AZ8P sample had the best $H_2S$ adsorption capacity, and AZ6P was the most suitable for the adsorption of ammonia.

키워드

참고문헌

  1. Zhu L and Oh WC, J. Multifunct Mater Photosci 5, 153-170 (2014).
  2. Y. Ueno, T. Horiuchi, M. Tomita, O. Niwa, O., H.-S. Zhou, T. Yamada and I. Honma, J. Anal. Chem., 74, 5257 (2002). https://doi.org/10.1021/ac0201732
  3. J.-H. Yun, K.-Y. Hwang and D.-K. Choi, J. Chem. Eng. Data, 43, 843 (1998). https://doi.org/10.1021/je980069a
  4. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 359, 710 (1992). https://doi.org/10.1038/359710a0
  5. M. Kruk, M. Jaroniec, C. H. Ko and R. Ryoo, Chem. Mater., 12, 1961 (2000). https://doi.org/10.1021/cm000164e
  6. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science, 279, 548 (1998). https://doi.org/10.1126/science.279.5350.548
  7. A. Sayari, S. Hamoudi and Y. Yang, Chem. Mater., 17, 212 (2005). https://doi.org/10.1021/cm048393e
  8. E. W. Shin, J. S. Han, M. Jang, S. H. Min, J. K. Park and R. M. Rowell, Environ. Sci. Technol., 34, 912 (2004).
  9. W.-C. Oh, J.-G. Kim, H. Kim, F.-J. Zhang, Ming-Liang Chen, Kan Zhang, Ze-Da Meng, J. Korean Ceram. Soc., 46, 6, 568-573 (2009). https://doi.org/10.4191/KCERS.2009.46.6.568
  10. W.-C. Oh, J.-G. Kim, H. Kim, M.-L. Chen, K. Zhang, Z.-D. Meng F.-J. Zhang, J. Mater. Res., 19, 569 (2009).
  11. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann, Appl. Catal. B, 39, 75 (2002). https://doi.org/10.1016/S0926-3373(02)00078-4
  12. W.-C. Oh, J.-S. Bae and M.-L. Chen, Carbon Science, 7, 259 (2006).
  13. W.-C. Oh, C.-S. Park, C.-Y. Park, M.-L. Chen, A.-R. Jung, Proceeding of International Carbon Festival 2006, Nov. 29-Dec.1, 2006, Jeollabukdo.
  14. W. Lu, D. D. L. Chung, Carbon, 35, 427 (1997). https://doi.org/10.1016/S0008-6223(97)89614-5
  15. J. W. Kim, M. H. Sohn, D. S. Kim, S. M. Sohn and Y. S. Kwon, J. Hazard. Mater., 85, 301 (2001). https://doi.org/10.1016/S0304-3894(01)00239-4
  16. S. C. Kim, I. K. Hong and K. A. Park, J. Ind. Eng. Chem., 3, 218 (1997).
  17. W. C. Oh, M. L. Chen and C. S. Lim, J. Ceram. Process. Res., 8, 119 (2007).
  18. T. Morimoto, S. Wu, M. A. Uddin and E. Sasaoka, Fuel, 84, 1968 (2005). https://doi.org/10.1016/j.fuel.2005.04.007
  19. G. Q. Lu and D. D. Lau, Gas Sep. Purif., 10, 103 (1996). https://doi.org/10.1016/0950-4214(96)00011-4
  20. K. Zhang and W. C. Oh, Korean J. Mater. Res., 19, 481 (2009). https://doi.org/10.3740/MRSK.2009.19.9.481
  21. A. Cameron and J. D. Macdowall, J. Appl. Chem. Biotechnol., 22, 1007 (1972).
  22. Guoxing Niu, Yao Huang, Xiaoyin Chen, Jianming He, Yong Liu and Adi He, Appl. Catal. B, 21, 63 (1999). https://doi.org/10.1016/S0926-3373(99)00009-0
  23. J. Weitkamp, Solid State Ion., 131, 175 (2000). https://doi.org/10.1016/S0167-2738(00)00632-9
  24. H. Yoneyama and T. Torimoto, Catal. Today, 58, 133 (2000). https://doi.org/10.1016/S0920-5861(00)00248-0
  25. T. Torimoto, S. Ito, S. Kuwabata and H. Yoneyama, Environ. Sci. Technol., 30, 1275 (1996). https://doi.org/10.1021/es950483k
  26. M. Matsuoka, E. Matsuda, K. Tsuji, H. Yamashita and M. Anpo, J. Mol. Catal. A 107, 399 (1996). https://doi.org/10.1016/1381-1169(95)00239-1
  27. M. Matsuoka, W.S. Ju, H. Yamashita and M. Anpo, J. Photochem. Photobiol. A, 160, 43 (2003). https://doi.org/10.1016/S1010-6030(03)00219-3
  28. G. Cik, S. Priesolova, H. Bujdakova, F. er en, T. Potheoova, J. Kri tin, Chemosphere, 63, 1419 (2006). https://doi.org/10.1016/j.chemosphere.2005.10.017
  29. K. D. Dubois, A. Petushkov, E. Garcia Cardona, S. C. Larsen and G. Li, J. Phys. Chem. Lett., 3, 486 (2011).
  30. F. Haque, E. Vaisman, C. H. Langford and A. Kantzas, J. Photochem. Photobiol. A, 169, 21 (2005). https://doi.org/10.1016/j.jphotochem.2004.05.019
  31. Y. Kuwahara and H. Yamashita. J. Mater. Chem., 21, 2389 (2011). https://doi.org/10.1039/c1jm90013g
  32. T. Kuzniatsova, Y. Kim, K. Shqau, P. K. Dutta and H. Verweij, Microporous Mesoporous Mater., 103, 102 (2007). https://doi.org/10.1016/j.micromeso.2007.01.042
  33. M. D. Driessen, A. L. Goodman, T. M. Miller, G. A. Zaharias and V. H. Grassian, J. Phys. Chem. B, 102, 549 (1998). https://doi.org/10.1021/jp972351e
  34. H. Haick and Y. Paz. J. Phys. Chem. B, 107, 2319 (2003). https://doi.org/10.1021/jp026940i
  35. R. Sitthikhankaew, D. Chadwick, S. Assabumrungrat and N. Laosiripojana, Fuel Process. Technol., 124, 24 (2014).
  36. Y. Xiao, S. Wang, D. Wu and Q. Yuan, Sep. Purif. Technol., 59, 326 (2008). https://doi.org/10.1016/j.seppur.2007.07.042
  37. M. Sarioglu, Sep. Purif. Technol., 41, 1 (2005). https://doi.org/10.1016/j.seppur.2004.03.008
  38. F. J. Barry, Mich. L. Rev, 68, 1103 (1970). https://doi.org/10.2307/1287338
  39. A. Dimirkou, M. K. Doula, Desalination, 224, 280 (2008). https://doi.org/10.1016/j.desal.2007.06.010
  40. M. L. Nguyen, C. C, New Zeal. J. Agric. Res., 41, 427 (1998). https://doi.org/10.1080/00288233.1998.9513328
  41. V. K. Gupta, A. Rastogi and A. Nayak, J. Colloid Interface Sci., 342, 533 (2010). https://doi.org/10.1016/j.jcis.2009.10.074