DOI QR코드

DOI QR Code

Highly Sensitive Gas Sensors Based on Electrospun Indium Oxide Nanofibers for Indoor Toxic CO and HCHO Gases

전기방사법으로 제작한 In2O3 나노섬유 기반 고감도 실내독성 CO 및 HCHO 가스센서

  • Im, Dong-Ha (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Sung-Hwan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kwon, Se-Hun (School of Material Science and Engineering, Pusan University) ;
  • Jung, Hyunsung (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
  • 임동하 (한국세라믹기술원 나노융합소재센터) ;
  • 황성환 (한국세라믹기술원 나노융합소재센터) ;
  • 권세훈 (부산대학교 재료공학과) ;
  • 정현성 (한국세라믹기술원 나노융합소재센터)
  • Received : 2016.08.22
  • Accepted : 2016.11.05
  • Published : 2016.12.01

Abstract

In this work, one dimension $In_2O_3$ nanostructures as detecting materials for indoor toxic gases were synthesized by an electrospinning process. The morphology of electrospun $In_2O_3$ nanofibers was controlled by electrolyte composition, applied voltage and working distance between a nozzle and a substrate. The synthesized $In_2O_3$ nanofibers-based paste with/without carbon black additives was prepared for the integration on a sensor device. The integration of $In_2O_3$ sensing materials was conducted by a hand-printing of the paste into the interdigit Au electrodes patterned on Si wafer. Gas sensing properties on CO and HCHO gases were characterized at $300^{\circ}C$. The evaluated sensing properties such as sensitivity, response time and recovery time were improved in $In_2O_3$ nanofiber pastes with carbon black, compared to the paste without carbon black.

Keywords

References

  1. A. dutta, N. Kaabbuathong, M. L. Grilli, E. D. Bartolomeo, and E. Traversa, J. Electrochemical. Soc., 150, H33 (2003). https://doi.org/10.1149/1.1533044
  2. Y. Zhang, M. Zhang, Z. Cai, M. Chen, and F. Cheng, Electrochim. Acta, 68, 172 (2012). [DOI: https:/doi.org/10.1016/j.electacta.2012.02.050]
  3. M. Hammerle, E.A.H. Hall, N. Cade, and D. Hodgins, Biosens. Bioelectron., 11, 239 (1996). [DOI: https:/doi.org/10.1016/0956-5663(96)88410-7]
  4. T. Hyodo, C. Ishibashi, K. Matsuo, K. Kaneyasu, and Y. Shimizu, Electrochim. Acta, 82, 19 (2012). [DOI: https:/doi.org/10.1016/j.electacta.2012.03.142]
  5. G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, Sensors, 10, 5469 (2010). [DOI: https:/doi.org/10.3390/s100605469]
  6. D. James, S. M. Scott, Z. Ali, and W. T. O'Hare, Microchim. Acta, 149, 1 (2005). [DOI: https:/doi.org/10.1007/s00604-004-0291-6]
  7. Y. F. Sun, S. B. Liu, F. L. Meng, Y. J. Liu, Z. Jin, L. T. Kong, and J. H. Liu, Sensors, 12, 2610 (2012). [DOI: https:/doi.org/10.3390/s120302610]
  8. V. D. Kapse, S. A. Ghosh, G. N. Chaudhari, F. C. Raghuwanshi, and D. D. Gulwade, Vacuum, 83, 346 (2009). [DOI: https:/doi.org/10.1016/j.vacuum.2008.05.027]
  9. B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, and E. K. Suh, Mater. Charact., 58, 680 (2007). [DOI: https:/doi.org/10.1016/j.matchar.2006.11.007]
  10. J. A. Dirksen, K. Duval, and T. A. Ring, Sens. Actuators B Chem., 80, 106 (2001). [DOI: https:/doi.org/10.1016/S0925-4005(01)00898-X]
  11. N. Barsan and U. Weimar, J. Phys. : Condens. Matter, 15, R813 (2003). [DOI: https:/doi.org/10.1088/0953-8984/15/20/201]
  12. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Appl. Phys. Lett., 84, 3654 (2004). [DOI: https:/doi.org/10.1063/1.1738932]
  13. A. Prim, E. Pellicer, E. Rossinyol, F. Peiro, A. Cornet, and J. R. Morante, Adv. Funct. Mater., 17, 2957 (2007). [DOI: https:/doi.org/10.1002/adfm.200601072]
  14. A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimar, and W. Gopel, Sens. Actuators B Chem., 47, 92 (1998). [DOI: https:/doi.org/10.1016/S0925-4005(98)00033-1]
  15. W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, and C. Wang, Sens. Actuators B Chem., 142, 61 (2009). [DOI: https:/doi.org/10.1016/j.snb.2009.07.031]
  16. E. Comini, Anal. Chim. Acta, 568, 28 (2006). [DOI: https:/doi.org/10.1016/j.aca.2005.10.069]
  17. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, and Z. L. Wang, Appl. Phys. Lett., 81, 1869 (2002). [DOI: https:/doi.org/10.1063/1.1504867]
  18. Z. Y. Chu, H. X. Sun, H. Xu, J. Zhou, G. Zhou, Y. Xie, L. Li, and K. Y. Shi, RSC Adv., 5, 101760 (2015). [DOI: https:/doi.org/10.1039/C5RA17575E]
  19. J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, Nanotechnology, 17, 4995 (2006). [DOI: https:/doi.org/10.1088/0957-4484/17/19/037]
  20. J. Y. Pakr, S. W. Choi, and S. S. Kim, Nanoscale Res. Lett., 5, 353 (2010). [DOI: https:/doi.org/10.1007/s11671-009-9487-3]
  21. R. S. Devan, R. A. Patil, J. H. Lin, and Y. R. Ma, Adc. Funct. Mater., 22, 3326 (2013). [DOI: https:/doi.org/10.1002/adfm.201201008]
  22. R. P. Sharma and P. K. Khanna, Fuel, 112, 550 (2013). [DOI: https:/doi.org/10.1016/j.fuel.2012.02.070]
  23. A. A. Vasiliev, A. V. Pisliakov, A. V. Sokolov, N. N. Samotaev, S. A. Soloviev, K. Oblov, V. Guarnieri, L. Lorenzelli, J. Brunelli, A. Maglione, A. S. Lipilin, A. Mozalev, and A. V. Legin, Sens. Actuators B Chem., 224, 700 (2016). [DOI: https:/doi.org/10.1016/j.snb.2015.10.066]
  24. D. H. Reneker and A. L. Yarin, Polymer, 49, 2387 (2008). [DOI: https:/doi.org/10.1016/j.polymer.2008.02.002]