DOI QR코드

DOI QR Code

컨베이어 진동을 이용한 IDE 적층 압전 캔틸레버 발전 소자의 무선 센서 응용 연구

A Study on the Characteristics of Wireless Sensor Powered by IDE Embedded Piezoelectric Cantilever Generators Using Conveyor Vibration

  • 김창일 (한국세라믹기술원 전자소재부품센터) ;
  • 이민선 (한국세라믹기술원 전자소재부품센터) ;
  • 조정호 (한국세라믹기술원 전자소재부품센터) ;
  • 백종후 (한국세라믹기술원 전자소재부품센터) ;
  • 장용호 ((주)센불 기술연구소) ;
  • 최범진 ((주)센불 기술연구소) ;
  • 손천명 (한전KDN(주) 발송전IT연구팀) ;
  • 서덕기 (한전KDN(주) 발송전IT연구팀) ;
  • 정영훈 (한국세라믹기술원 전자소재부품센터)
  • Kim, Chang-il (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Min-seon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jung-ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jang, Yong-ho (Technology & Research Center, Senbool Corporation) ;
  • Choi, Beom-jin (Technology & Research Center, Senbool Corporation) ;
  • Son, Cheon-myoung (Power Transmission and Substation IT Research Group, KEPCO KDN) ;
  • Seo, Duk-gi (Power Transmission and Substation IT Research Group, KEPCO KDN) ;
  • Jeong, Young-hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2016.09.27
  • 심사 : 2016.10.25
  • 발행 : 2016.12.01

초록

Characteristics of a wireless sensor powered by the IDE (interdigitated electrode) embedded piezoelectric cantilever generator were analyzed in order to evaluate its potential for use in wireless sensor applications. The IDE embedded piezoelectric cantilever was designed and fabricated to have a self-resonance frequency of 126 Hz and acceleration of 1.57 G, respectively, for the mechanical resonance with a practical conveyor system in a thermal-power plant. It produced maximum output power of 2.81 mW under the resistive load of $160{\Omega}$ at 126 Hz. The wireless sensor module is electrically connected to a rectifier capacitor with capacity of 0.68 farad and 3.8 V for power supply by the piezoelectric cantilever generator. The unloaded capacitor could be charged as a rate of approximately $365{\mu}V/s$ while the capacitor exhibited that of 0.997 mV/min. during communication under low duty cycle of 0.2%. Therefore, it is considered that the fabricated IDE embedded piezoelectric cantilever generator can be used for wireless sensor applications.

키워드

참고문헌

  1. D. Culler, D. Estrin, and M. Srivastava, IEEE Computer Society, 37, 41 (2004). [DOI: https:/doi.org/10.1109/MC.2004.93]
  2. E. M. Yeatman, Proc. Int'1 Workshop Wearable and Implantable Body Sensor Networks (London, England, 2004) p. 20.
  3. S. W. Arms, C. P. Townsend, D. L. Churchill, J. H. Galbreath, and S. W. Mundell, Proc. SPIE Int'1 Symposium on Smart Structures & Smart Materials, (San Diego, USA, 2005) p. 267.
  4. S. Priya and D. J. Inman, Energy Harvesting Technologies (Springer, New York, 2009) p. 195. [DOI: https:/doi.org/10.1007/978-0-387-76464-1]
  5. J. M. Gilbert and F. Balouchi, International Journal of Automation and Computing, 5, 334 (2008). [DOI: https:/doi.org/10.1007/s11633-008-0334-2]
  6. S. Roundy, P. K. Wright, and J. Rabaey, Computer Communications, 26, 1131 (2003). [DOI: https:/doi.org/10.1016/S0140-3664(02)00248-7]
  7. D. L. Churchill, M. J. Hamel, C. P. Townsend and S. W. Arms, Proc. SPIE 5055, Smart Structures and Materials 2003: Smart Electronics, MEMS, BioMEMS, and Nanotechnology (San Diego, USA, 2003). [DOI: https:/doi.org/10.1117/12.483591]
  8. J. A. Paradiso and M. Feldmeier, Ubiquitous 2001: Ubiquitous Computing (Springer, New York, 2001) p. 299. [DOI: https:/doi.org/10.1007/3-540-45427-6_25]
  9. R. D. Kornbluh, R. Pelrine, Q. Pei, R. Heydt, S. Stanford, S. Oh, and J. Eckerle, Proc. SPIE 4698, Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies (San Diego, USA, 2002) p. 254.
  10. Y. Zou, L. Tong, and G. P. Steven, Journal of Sound and Vibration, 230, 357 (2000). [DOI: https:/doi.org/10.1006/jsvi.1999.2624]
  11. S. B. Park, D. H. Han, and L. H. Kang, Composites Research, 27, 141 (2014). [DOI: https:/doi.org/10.7234/composres.2014.27.4.141]
  12. D. H. Han, L. H. Kang, J. Thayer, and C. Farrar, Composites Research, 28, 155 (2015). [DOI: https:/doi.org/10.7234/composres.2015.28.4.155]
  13. S. Meninger, J.O.M. Miranda, R. Amirtharajah, A. P. Chandrakasan, and J. H. Lang, IEEE Trans. Very Large Scale Integration (VLSI) Systems, 9, 64 (2001). https://doi.org/10.1109/92.920820
  14. P. D. Mitcheson, T. C. Green, E. M. Yeatman, and A. S. Holmes, J. Microelectromechanical Systems, 13, 429 (2004). https://doi.org/10.1109/JMEMS.2004.830151
  15. A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, United Kingdom, 2011) p. 301. [DOI: https:/doi.org/10.1002/9781119991151.ch10]
  16. M. S. Lee, C. I. Kim, J. S. Yun, W. I. Park, Y. W. Hong, J. H. Paik, J. H. Cho, Y. H. Park, Y. H. Jang, B. J. Choi, and Y. H. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 581 (2016) [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.9.581]
  17. http://lora-alliance.org/