DOI QR코드

DOI QR Code

Minireview on Nuclear Spin Polarization in Optically-Pumped Diamond Nitrogen Vacancy Centers

  • Received : 2016.10.11
  • Accepted : 2016.12.12
  • Published : 2016.12.20

Abstract

Nitrogen vacancy-centered diamond has recently emerged as a promising material for various applications due to its special optical and magnetic properties. In particular, its applications as a fluorescent biomarker with small toxicity, magnetic field and electric field sensors have been a topic of great interest. Recent review (R. Schirhagl et al 2014) introduced those applications using single NV-center in nanodiamond. In this minireview, I introduce the rapidly emerging DNP (Dynamic Nuclear Polarization) field using optically-pumped NV center in diamonds. Additionally, the possibility of exploiting the optically-pumped NV center for polarization transfer source, which will produce a profound impact on room temperature DNP, will be discussed.

Keywords

References

  1. R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Annu. Rev. Phys. Chem. 65, 83 (2014) https://doi.org/10.1146/annurev-physchem-040513-103659
  2. H. Ko, G. Gong, G. Jeong, I. Cho, H. Seo, and Y. Lee, J. Kor. Magn. Reson. Soc. 19, 124 (2015) https://doi.org/10.6564/JKMRS.2015.19.3.124
  3. T. Walker, and W. Happer, Rev. Mod. Phys. 69, 629 (1997) https://doi.org/10.1103/RevModPhys.69.629
  4. C. Witte, and L. Schroeder, NMR Biomed. 26, 788 (2013) https://doi.org/10.1002/nbm.2873
  5. M. Bouchiat, T. Carver, and C. Varnum, Phys. Rev. Lett. 5, 373 (1960) https://doi.org/10.1103/PhysRevLett.5.373
  6. C. Bowers, and D. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986) https://doi.org/10.1103/PhysRevLett.57.2645
  7. J. Natterer, and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997) https://doi.org/10.1016/S0079-6565(97)00007-1
  8. J. A. Reimer, Solid State NMR 37, 3 (2010) https://doi.org/10.1016/j.ssnmr.2010.04.001
  9. S. E. Hayes, S. Mui, and K. Ramaswamy, J. Chem. Phys. 128, (2008)
  10. M. Goez, Concept. Magnetic Res. 7, 69 (2005)
  11. J. H. Lee, A. Sekhar, and S. Cavagnero, J. Am. Chem. Soc. 133, 8062 (2011) https://doi.org/10.1021/ja111613c
  12. B. Lama, J. H. P. Collins, D. Downes, A. N. Smith, and J. R. Long, NMR Biomed. 29, 226 (2016) https://doi.org/10.1002/nbm.3473
  13. C. O. Bretschneider, U. Akbey, F. Aussenac, G. L. Olsen, A. Feintuch, H. Oschkinat, and L. Frydman, ChemPhysChem 17, 2691 (2016) https://doi.org/10.1002/cphc.201600301
  14. R. S. Sussmann, CVD Diamond for Electronic Devices and Sensors; John Wiley: Chichester, U.K. (2009)
  15. P. Dutta, G. V. Martinez, and R. J. Gillies, J. Phys. Chem. Lett. 5, 597 (2014) https://doi.org/10.1021/jz402659t
  16. A. M. Panich, Crit. Rev. Solid State Mater. Sci. 37, 276 (2012) https://doi.org/10.1080/10408436.2011.606930
  17. E. Rej, T. Gaebel, T. Boele, D. E.J. Waddington, and D. J. Reilly, Nat. Commun. 9459 (2015)
  18. L. B. Casabianca, A. I. Shames, A. M. Panich, O. Shenderova, and L. Frydman, J. Phys. Chem. C 115, 19041 (2011) https://doi.org/10.1021/jp206167j
  19. E. Rej, T. Gaebel, D. E.J. Waddington, and D. J. Reilly, arXiv:1606.06822v1 (2016)
  20. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C.L. Hollenberg, Phys. Rep. 528, 1 (2013) https://doi.org/10.1016/j.physrep.2013.02.001
  21. J. P. King, P. J. Coles, and J. A. Reimer, Phys. Rev. B 81, 073201 (2010) https://doi.org/10.1103/PhysRevB.81.073201
  22. E. Scott, M. Drake, and J. A. Reimer, J. Magn. Reson. 264, 154 (2016) https://doi.org/10.1016/j.jmr.2016.01.001
  23. V. Jacques, P. Neumann, J. Beck, M. Markham, D. Twitchen, J. Meijer, F. Kaiser, G. Balasubramanian, F. Jelezko, and J. Wrachtru, Phys. Rev. Lett. 102, 057403 (2009) https://doi.org/10.1103/PhysRevLett.102.057403
  24. R. Fischer, A. Jarmola, P. Kehayias, and D. Budker, Phys. Rev. B, 87 125207 (2013) https://doi.org/10.1103/PhysRevB.87.125207
  25. R. Fischer, C. O. Bretschneider, P. London, D. Budker, D. Gershoni, and L. Frydman, Phys. Rev. Lett. 111, 057601 (2013) https://doi.org/10.1103/PhysRevLett.111.057601
  26. H. Wang, C. S. Shin, C. E. Avalos, S. J. Seltzer, D. Budker, A. Pines, and V. S. Bajaj, Nat. Commun. 4, 1940 (2013) https://doi.org/10.1038/ncomms2930
  27. D. Pagliero, A. Laraoui, J. D. Henshaw, and C. A. Meriles, Appl. Phys. Lett. 105, 242402 (2014) https://doi.org/10.1063/1.4903799
  28. G. A. Alvarez, C. O. Bretschneider, R. Fischer, P. London, H. Kanda, S. Onoda, J. Isoya, D. Gershoni, and L. Frydman, Natrue Commun. 6, 8456 (2015) https://doi.org/10.1038/ncomms9456
  29. J. P. King, K. Jeong, C. C. Vassiliou, C. S. Shin, R. H. Page, C. E. Avalos, H. Wang, and A. Pines, Nat. Commun. 6, 8965 (2015) https://doi.org/10.1038/ncomms9965
  30. M. Drake, E. Scott, and J. A. Reimer, New J. Phys. 18, 013011 (2016)
  31. J. Scheuer, I. Schwartz, Q. Chen, D. S. Sünninghausen, P. Carl, P. Hofer, A. Retzker, H. Sumiya, J. Isoya, B. Luy, M. B. Plenio, B. Naydenov, and F. Jelezko, New J. Phys. 18 ,013040 (2016) https://doi.org/10.1088/1367-2630/18/1/013040
  32. C. S. Shin, C. E. Avalos, M. C. Butler, H. Wang, S. J. Seltzer, R. Liu, A. Pines, and V. S. Bajaj, Phys. Rev. B 88, 161412(R) (2013) https://doi.org/10.1103/PhysRevB.88.161412
  33. H. Wang, C. S. Shin, S. J. Seltzer, C. E. Avalos, A. Pines, and V. S. Bajaj, Nat. Commun. 5, 4135 (2014) https://doi.org/10.1038/ncomms5135
  34. C. Mulle, X. Kong, J. M. Cai, K. Melentijevic, A. Stacey, M. Markham, D. Twitchen, J. Isoya, S. Pezzagna, J. Meijer, J. F. Du, M.B. Plenio, B. Naydenov, L. P. McGuinness, and F. Jelezko, Nat. Commun. 5, 4703 (2014) https://doi.org/10.1038/ncomms5703
  35. S. H. Choi, K. S. Han, S. K. Kwon, S. K. Nam, H. H. Choi, Moohee Lee, and Ae Ran Lim, J. Kor. Magn. Reson. Soc. 11, 64 (2007)