DOI QR코드

DOI QR Code

생물다양성에 대한 기후변화의 영향과 그 대책

Effects of climate change on biodiversity and measures for them

  • 안지홍 (서울여자대학교 대학원 생명환경공학과) ;
  • 임치홍 (서울여자대학교 대학원 생명환경공학과) ;
  • 정성희 (서울여자대학교 대학원 생명환경공학과) ;
  • 김아름 (서울여자대학교 대학원 생명환경공학과) ;
  • 이창석 (서울여자대학교 생명환경공학과)
  • An, Ji Hong (Dept. of Bio & Environmental Technology, Graduate School Seoul Women's University) ;
  • Lim, Chi Hong (Dept. of Bio & Environmental Technology, Graduate School Seoul Women's University) ;
  • Jung, Song Hie (Dept. of Bio & Environmental Technology, Graduate School Seoul Women's University) ;
  • Kim, A Reum (Dept. of Bio & Environmental Technology, Graduate School Seoul Women's University) ;
  • Lee, Chang Seok (Dept. of Bio & Environmental Technology, Seoul Women's University)
  • 투고 : 2016.08.18
  • 심사 : 2016.11.09
  • 발행 : 2016.11.30

초록

본 연구에서는 지구적 차원에서 생물다양성의 성립 배경과 그동안 일어난 변화 그리고 기후변화가 생물다양성 및 인간에 미치는 영향을 밝히고 그 영향을 줄이기 위한 대안을 제시하였다. 생물다양성은 생명체의 풍부한 정도이며, 생물을 구분하는 모든 수준에서의 다양성을 종합적으로 의미한다. 즉, 생물다양성은 유전자, 종 그리고 생태계 전반과 그들의 상호작용을 아우른다. 이는 생태계의 기반을 구성하며, 모든 사람들이 필수적으로 의존하는 서비스를 제공한다. 그럼에도 불구하고 오늘날 생물다양성은 주로 인간 활동에 의해 점점 더 위협받고 있다. 지구상의 생물은 생명이 탄생한 이래 약 40억년의 역사를 통해 다양한 환경에 적응하고 진화한 결과, 약 1000만 내지 3000만종으로 추정되는 다양한 생물이 존재하게 되었다. 생물다양성을 구성하는 무수한 생명들은 각각의 고유한 특성을 가지고 있으며 다양한 관계 속에 얽혀 있다. 우리들이 현재 생활하고 있는 지구의 환경도 이러한 생물체의 방대한 연관성과 상호작용에 의해 긴 세월 동안 만들어져 왔으며, 인류도 하나의 생물로서 다른 생물들과 관계를 맺으며 살아가고 있다. 이러한 주위의 생물들이 없다면 사람도 살아갈 수 없다. 그러나 인류는 최근 수 백 년 간 과거의 평균 멸종속도를 1000배 가량이나 가속시켜 왔다. 우리는 미래 세대의 풍요로운 삶을 위해서라도 생물다양성을 보전하는 한편, 지속가능하게 이용할 책임이 있다. 우리나라는 세계 어느 국가보다도 빠른 경제 성장을 이루어왔으나, 동시에 이는 남북으로 길게 뻗은 반도 국가라는 지리적 특성에 의해 본래 풍부했던 생물다양성을 빠르게 소실시키는 결과를 야기하였다. 한국인은 오랫동안 농업, 임업 그리고 어업을 해오는 과정에서 자연과의 공존을 통해 독특한 고유의 문화를 창조하였다. 그러나 근래 서구문명의 유입과 과학 기술의 발전 과정에서 이러한 자연과의 관계는 멀어지게 되었으며, 자연과 문화 사이의 조화로운 조합에 의해 창출된 고유한 풍토는 점점 더 사라지고 있다. 한국의 인구는 세계 인구가 지속적으로 증가하는 것과는 반대로 점차 줄어들 것으로 예측되고 있다. 이 시점에서 우리는 인구 감소에 의한 자연의 회복에 발맞추어 급속한 인구 증가 및 경제 성장으로 인해 훼손된 생물다양성을 복원할 필요가 있다. 지구상에 생명이 탄생한 이래 다섯차례의 대멸종이 있었다. 현대의 대멸종은 매우 급속히 진행되고 있으며, 인간 활동에 의한 영향이 주요 원인인 점에서 이전의 것과 구분된다. 기후변화는 실제로 일어나고 있으며, 생물다양성은 이러한 변화에 매우 취약하다. 만약 생명체가 변화하는 환경에서 '진화를 통한 적응', '생존가능한 다른 지역으로의 이주' 등과 같은 생존 방법을 찾아내지 못한다면 이들은 절멸할 것이므로, 기후변화가 지속된다면 생물다양성은 극도로 훼손될 수 밖에 없다. 따라서 우리는 이러한 훼손정도를 최소화하기 위해 기후변화가 생물다양성에 미치는 영향을 보다 적극적이고 심도있게 파악할 필요가 있다. 생물계절의 변화, 식생 이동을 비롯한 분포 범위의 변화, 생물 간 상호작용의 부조화, 먹이 사슬 이상에 기인한 번식 및 생장률 감소, 산호초 백화현상 등이 기후변화에 미치는 영향으로 등장하고 있다. 질병의 확산, 식량 생산 감소, 작물 경작지 범위 변화, 어장 및 어업시기의 변화 등은 인간에 대한 영향으로 나타나고 있다. 기후변화 문제를 해결하기 위해 우선, 우리는 온실 가스 배출량을 감소시켜 기후변화 완화를 시도할 필요가 있다. 그러나 현재 우리가 온실가스 배출을 당장 멈추더라도, 기후변화는 당분간 지속될 전망이다. 이런 점에서, 기후변화 적응 전략을 준비하는 것이 더 현실적이 될 수 있다. 생물다양성에 대한 기후변화 영향의 지속적 모니터링 및 보다 적합한 모니터링 체계 구축이 선행과제가 될 수 있다. 생물다양성이 성립할 수 있는 생태적 공간의 확보, 이동 보조 및 남북을 이어주는 수평 및 저지대와 고지대를 이어주는 수직적 생태네트웍이 기후변화에 따른 생물다양성의 적응을 돕는 대안으로 추천될 수 있다.

In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.

키워드

참고문헌

  1. Ashton MS, Tyrrell, ML, Spalding, D, Gentry B, (eds.). (2012). Managing Forest Carbon in a Changing Climate. Springer, New York.
  2. Bancroft, BA, Baker, NJ, Blaustein, AR (2007). Effects of UVB radiation in marine and freshwater organisms: a synthesis through meta-analysis. Ecology Letters 10, pp. 332-345. https://doi.org/10.1111/j.1461-0248.2007.01022.x
  3. Bancroft, BA, Baker, NJ, Searle, CL, Garcia, TS, Blaustein AR (2008). Larval amphibians seek warm temperature and do not avoid harmful UVB radiation. Behavioral Ecology 19, pp. 879-886. https://doi.org/10.1093/beheco/arn044
  4. Blaustein, AR, Bancroft, BA (2007). Amphibian population declines: evolutionary considerations. Bioscience 57, pp. 437-444. https://doi.org/10.1641/B570517
  5. Blaustein, AR, Searle, C, Bancrof, BA, Lawler, J (2012). Amphibian population decline and climate change. In: E.A. Beever and J.L. Belant (eds.). Ecological Consequences of Climate Change: Mechanisms, Conservation, and Management. CRC Press, New York, pp. 29-53.
  6. Both, C, van Asch, M, Bijlsma, RG, van den Burg, AB, Visser, ME (2009). Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? Journal of Animal Ecology 78, pp. 73-83. https://doi.org/10.1111/j.1365-2656.2008.01458.x
  7. Buddemeier, RW, Kleypas, JA, Aronson, RB (2004). Coral reefs Potential Contributions of Climate Change to Stresses on Coral Reef Ecosystems and Global climate. Pew Center on Global Climate Change, Arlington, VA, pp. 55
  8. Cardinale, J, Duffy, E, Gonzalez, A, Naeem, S (2012). Biodiversity loss and its impact on humanity. Nature 486, pp. 56-67.
  9. CBD (Convention on Biological Diversity) (1992). Convention on Biological Diversity. Secretariat of the Convention on Biological Diversity, Montreal, Canada.
  10. CBD (Convention on Biological Diversity) (2010). Sustainable use of biodiversity. www.cbd.int/sustainable.
  11. Chester, ET, Robson, BJ, Chambers, JM (2013). Novel methods for managing freshwater refuges against climate change in southern Australia. National Climate Change Adaptation Research Facility, Australia, pp. 98
  12. ESK(Ecological Society of Korea) (2013) Master plan for managing Biodiversity center of Korea. Ministry of Environment. Seoul. [Korean Literature]]
  13. Gaston, KJ, Spicer, JI (2004). Biodiversity: An Introduction, 2nd ed. Blackwell, Oxford.
  14. Greenemeier, L (2008). U.S. Protects Polar Bears Under Endangered Species Act. Scientific American, May 14, 2008.
  15. Hardy, JT (2003). Climate change: causes, effects, and solutions. Wiley, New York, pp. 260
  16. Hobbs, RJ, Higgs, E, Harris, JA (2009). Novel ecosystems: implications for conservation and restoration. Trends in Ecology and Evolution 24(11), pp. 599-605. https://doi.org/10.1016/j.tree.2009.05.012
  17. IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland.
  18. Kudo, G, Nishikawa, Y, Kasagi, T, Kosuge, S (2004). Does seed production of spring ephemerals decrease when spring comes early? Ecological Research 19, pp. 255-259. https://doi.org/10.1111/j.1440-1703.2003.00630.x
  19. Kwon, TS, Lee, CM, Kim, SS (2014). Northward range shifts in Korean butterflies. Climatic Change 126, pp. 163-174. DOI 0.1007/s10584-014-1212-2. https://doi.org/10.1007/s10584-014-1212-2
  20. Lee, CS (2015). Role and task of restoration ecology in changing environment. The National Academy of Sciences. pp. 481-527. [Korean Literature]
  21. Lee. CS, Rhyu, TC, Jeong E (2011a). A Consideration on IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) and Ecosystem Services as a Core Subject of the Organization. Journal of Restoration Ecology 2(1), pp. 73-78. [Korean Literature]]
  22. Lee, CS, You, YH (2001). Landscape ecology and restoration of nature. In: Research network for landscape ecology of Korea(ed.). Landscape Ecology. Donghwa Technology publishing Co. Seoul. pp. 359-383. [Korean Literature]]
  23. Lee, JK, Chung, OS, Lee, WS (2011b). Altitudinal Variation in Parental Provisioning of Nestling Varied Tits (Poecile varius). The Wilson Journal of Ornithology, 123(2), pp. 283-288. https://doi.org/10.1676/10-106.1
  24. Lim CH, Kim, GS, An, JH, You, BH, Bae, YS, Byun, HG, Lee, CS (2016). Relationship between biodiversity and landscape structure in the Gyungan stream basin, central Korea. Entomological Research. doi: 10.1111/1748-5967.12172.
  25. MEA(Millennium Ecosystem Assessment) (2005). Millennium Ecosystem Assessment Synthesis Report. www.millenniu massessment.org.
  26. Morell, V (1999). The variety of life. National Geographic 195 (February), pp. 6-32.
  27. Naeem, S, Byers, D, Tjossem, SF, Bristow, C, Li, S (1999). Plant neighborhood diversity and production. Ecoscience, 6, pp. 355-365. https://doi.org/10.1080/11956860.1999.11682535
  28. Naveh, Z (1994). From Biodiversity to Ecodiversity: A Landcape-Ecology Approach ro Conservation and Restoration. Restoration Ecology 2, pp. 180-189. https://doi.org/10.1111/j.1526-100X.1994.tb00065.x
  29. Negi, CS (2012). Culture and biodiversity conservation: case studies from Uttarakhand, Central Himalaya. Indian Journal of Traditional Knowledge 11, pp. 273-278.
  30. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology 4, pp. 355-364. https://doi.org/10.1111/j.1523-1739.1990.tb00309.x
  31. Oparin, AI (1924). The Origin of Life (translated by Ann Synge). www.valencia.edu/-orilife.
  32. Primack, RB (2008). A Primer of Conservation Biology. Fourth ed. Sinauer Associates, Inc. Sunderland, MA.
  33. Saseendran, SA, Singh, KK, Rathore, LS, Singh, SV, Sinha, SK (2000). Effects of climate change on rice production in the tropical humid climate of Kerrala, India. Climatic Change 44, pp. 495-514. https://doi.org/10.1023/A:1005542414134
  34. Sharma, KK, Jaiswal, AK, Kumar, KK (2006). Role of lac culture in biodiversity conservation: issues at stake and conservation strategy. Current Science 91, pp. 894-898.
  35. Song, HG, Lee, CS (2014). Diagnosis on climate change: climate change based on the flowering response of cherry tree, In: CS Lee (ed.). Climate chang and Ecology. Series of Long Term Ecological Research 7, NIE, Seocheon. pp. 60-74.
  36. Strickland RM, Grosse, DJ, Stubin, AI, Ostrander, GK, Sibley, TH (1985). Definition and characterization of data needs to describe the potential effects of increased atmospheric $CO_2$ on marine fisheries of the Northeast Pacific Ocean. Virginia, U.S. Department of Energy, Office of Energy Research. DOE/NBB-075. TR028. NTIS Springfield, pp. 78
  37. Visser, ME, Both, C (2005). Shifts in phenology due to global climate change: the need for yardstick. Proceedings of the Royal Society B: Biological Sciences 272, pp. 2561-2560. https://doi.org/10.1098/rspb.2005.3356
  38. Visser, ME, Holleman, LJM (2001). Warmer spring disrupt the synchrony of Oak and Winter Moth phenology. Proceedings of the Royal Society B: Biological Sciences 268, pp. 289-294. https://doi.org/10.1098/rspb.2000.1363
  39. Visser, ME, van Noordwijk, AJ, Tinbergen, JM, Lessells, CM (1998). Warmer springs lead to mistimed reproduction in great tits (Parus major). Proceedings of the Royal Society B: Biological Sciences 265, pp. 1867-1870. https://doi.org/10.1098/rspb.1998.0514
  40. Visser, ME, Adriaensen, F, van Balen, JH, Blondel, J, Dhondt, AA, van Dongen, S, du Feau, C, Ivankina, EV, Kerimov, AB, De Laet, J, Matthysen, E, McCleery, RH, Orell, M, Thomson, DL (2003). Variable responses to large-scale climate change in European Parus populations. Proceedings of the Royal Society B: Biological Sciences 270, pp. 367-372. https://doi.org/10.1098/rspb.2002.2244
  41. Visser, ME, Both, C, Lambrechts, MM (2004). Global climate change leads to mistimed avian reproduction. Advances in Ecological Research 35, pp. 89-110. https://doi.org/10.1016/S0065-2504(04)35005-1
  42. Vitt, PK, Havens, AT, Kramer, D, Sollenberger, Yates, E (2009). Assisted migration of plants: Changes in latitudes, changes in attitudes. Biol. Conserv. doi:10.1016/j.biocon.2009.08.015.
  43. Vitt, P, Havens, K, Kramer, AT, Sollenberger, D, Yates, E (2010) Assisted migration of plants: Changes in latitudes, changes in attitude. Biological Conservation 143 (1), pp. 18-27. https://doi.org/10.1016/j.biocon.2009.08.015
  44. Wilson, RJ, Gutierrez, D (2012). Effects of climate change on the elevational limits of species range. In: E.A. Beever and J.L. Belant (eds.). Ecological Consequences of Climate Change: Mechanisms, Conservation, and Management. CRC Press, New York, pp. 107-131.
  45. Yoshimoto, M, Yokozawa, M, Iizumi, T, Okada, M, Nishimori, M, Masaki, Ishigooka, Y, Kuwagata, T, Kondo, M, Ishimaru, T, Fukuoka, M, and Hasegawa, T (2010). Projection of effects of climate change on rice yield and keys to reduce its uncertainties. Crop, Environment and Bioinformatics 7, pp. 260-268.

피인용 문헌

  1. The Impact of Atmospheric Phenomena on South Korean Students’ Engagement at School through the Mediating Effect of the Students’ Health vol.08, pp.03, 2018, https://doi.org/10.4236/acs.2018.83020