DOI QR코드

DOI QR Code

Changes in the Macrobenthic Community in Sihwa Tidal Flat After Operation of the Tidal Power Plant

조력발전소 가동 후 시화갯벌의 대형저서동물군집 변화

  • 김민규 (한국해양과학기술원 생물.생태계연구본부) ;
  • 구본주 (한국해양과학기술원 생물.생태계연구본부)
  • Received : 2016.11.03
  • Accepted : 2016.12.15
  • Published : 2016.12.30

Abstract

In this study, we investigated changes in the macrobenthic community in Sihwa tidal flat before and after the operation of a Tidal Power Plant (TPP). In order to investigate changes in the macrobenthic community structure, field surveys were conducted at eighteen stations in 4 transect lines every September from 2011 to 2015. Mean density of macrobenthos decreased to $116ind./m^2$ in 2015 from $1,602ind./m^2$ in 2011. While the mean density of macrobenthos has decreased, species richness and biomass have gradually increased. The species diversity and SEP (Shannon-wiener Evenness Proportion) have also gradually increased over time since the operation of the TPP. The macrobenthic community in Sihwa tidal flat was divided into 4 groups on a yearly base. Before the operation of TPP, opportunistic species such as Neanthes succina and Polydora cornuta largely contributed to the structure of the macrobenthic community, while equilibrium species such as Periserrula leucophryna and Scopimera globosa contributed after the operation. With the operation of TPP, the macrobenthic community has rapidly recovered and this might be related to improvement in the quality of water and sedimentary environments as a result of an increase in water mass volume exchanged through the TPP gate.

Keywords

References

  1. 강성현, 김은희, 구본주 (2005) 연안통합관리를 통한 시화호 간척지의 지속가능한 개발. 한국습지학회지 7(1):93-106 (Kahng SH, Kim EH, Koo BJ (2005) Sustainable Developmentof Reclaimed Area in Lake Shihwa by IntegratedCoastal Management. J Kor Wetlands Soc 7(1):93-106)
  2. 고철환, 박철, 유신재, 이원재, 이태원, 장창익, 최중기, 홍재상, 허형택 (1997) 해양생물학. 서울대학교출판부, 654 p (Koh CH, Park C, Yoo SJ, Lee WJ, Lee TW, Jang CI, ChoiJK, Hong JS, Heo HT (1997) Marine biolgy. SeoulNational University Press, 645 p)
  3. 구본주, 신상호, 이석 (2008a) 급격한 조석 감소에 의한 새만금 갯벌 대형저서동물 변화. Ocean and Polar Res 30(4):485-495 (Koo BJ, Shin SH, Lee S (2008a) Changes in benthicmacrofauna of the saemangeum tidal flat as result of adrastic tidal reduction. Ocean and Polar Res 30(4):485-495) https://doi.org/10.4217/OPR.2008.30.4.485
  4. 구본주, 신상호, 우한준, 김은수, 제종길 (2008b) 새만금 4호 방조제 연결 후 군산갯벌 대형저서동물군집 변화. Ocean and Polar Res 30(4):497-507 (Koo BJ, Shin SH, Woo HJ, Kim ES, Je JG (2008b)Changes in macrobenthic community structure on gunsantidal flat after the closing of the Saemangeum 4th Dyke.Ocean and Polar Res 30(4):497-507) https://doi.org/10.4217/OPR.2008.30.4.497
  5. 구본주 (2016) 갯벌 생물의 집, 서식굴. 한국해양과학기술원, 안산, 72 p (Koo BJ (2016) Burrow of macroinvertebrate in tidal flat.KIOST, Ansan, 72 p)
  6. 김민규, 구본주 (2015) 조력발전소 가동 후 시화호 내 조간대의 면적 변화. J Kor Soc Mar Env Eng 18(4):310-316 (Kim MK, Koo BJ (2015) The intertidal area in lake Sihwaafter operation of the tidal power plant. J Kor Soc MarEnv Eng 18(4):310-316)
  7. 나공태, 김종근, 김은수, 김경태, 이정무, 김성근, 김의열, 이승용, 박은주 (2013) 수질평가지수를 이용한 시화호 내측 및 외측 해역의 시공간적 수질변화 평가: 조력발전소 가동에 따른 영향 연구. J Kor Soc Mar Env Eng 16(2): 102-114 (Ra K, Kim J-K, Kim E-S, Kim K-T, Lee J-M, Kim S-K,Kim E-Y, Lee S-Y, Park E-J (2013) Evaluation of spatialand temporal variations of water quality in lake Shihwaand outer sea by using water quality index in Korea: acase study of unfluence of tidal power plant operation. JKor Soc Mar Env Eng 16(2):102-114)
  8. 나영호 (2003) 원격탐사를 이용한 새만금 조간대의 지형변화 및 광학반사 특성연구. 이학석사 학위논문, 연세대학교, 118 p (Na YH (2003) Study on surface change and opticalreflectance of the Saemangeum intertidal by remotesensing. Ms.D. Thesis, Yonsei University, 118 p)
  9. 임현식, 홍재상 (1997) 진해만 저서동물의 군집생태 : 군집구조. J Kor Fish Soc 30(2):175-187 (Lim HS, Hong JS (1997) Ecology of the macrozoobenthosin Chinhae Bay, Korea. Community structure. J Kor FishSoc 30(2):175-187)
  10. 정종철 (2000) 시화호 갑문조절을 통한 수질개선 효과 분석. J Kor Soc Water Qual 16(1):1-8 (Jung JC (2000) The effect analysis of water qualityenhancement using the water gate control in lake Sihwa.J Kor Soc Water Qual 16(1):1-8)
  11. 한국수자원공사 (2016) Statistical Data of Sihwa tidal power plant. https://tlight.kwater.or.kr/ Accessed 1 Sep 2016 (K-water (2016) Statistical Data of Sihwa tidal power plant.https://tlight.kwater.or.kr/ Accessed 1 Sep 2016)
  12. 해양수산부 (2013) 시화호 해양환경 개선 사업. 한국해양과학기술원, BSPG 48041-10290-7, 475 p (Ministry of Oceans and Fisheries (2013) Annual report ofproject to improve the marine environments of theShihwa Lake. KIOST, BSPG 48041-10290-7, 475 p)
  13. 해양수산부 (2014) 시화호 해양환경 개선 사업. 한국해양과학기술원, BSPG 48391-10564-4, 714 p (Ministry of Oceans and Fisheries (2014) Annual report ofproject to improve the marine environments of theShihwa lake. KIOST, BSPG 48391-10564-4, 714 p)
  14. 해양수산부 (2015) 시화호 해양환경 개선 사업. 한국해양과학기술원, BSPG 49021-10838-3, 640 p (Ministry of Oceans and Fisheries (2015) Annual report ofproject to improve the marine environments of theShihwa lake. KIOST, BSPG 49021-10838-3, 640 p)
  15. Arntz WE, Rumohr H (1982) An experimental study of macrobenthic colonization and succession, and the importance of seasonal variation in temperate latitudes. J Exp Mar Biol Ecol 64(1):17-45 https://doi.org/10.1016/0022-0981(82)90066-1
  16. Bilyard GR (1987) The value of benthic infauna in marine pollution monitoring studies. Mar Poll Bull 18:581-585 https://doi.org/10.1016/0025-326X(87)90277-3
  17. Craft C, Reader J, Sacco JN, Broome SW (1999) Twentyfive years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecol Appl 9(4): 1405-1419 https://doi.org/10.1890/1051-0761(1999)009[1405:TFYOED]2.0.CO;2
  18. Dittmann S (2000) Zonation of benthic communities in a tropical tidal flat of north-east Australia. J Sea Res 43:33-51 https://doi.org/10.1016/S1385-1101(00)00004-6
  19. Douziech M, Hellweg S, Verones F (2016) Are Wave and Tidal Energy Plants New Green Technologies. Environ Sci Tech 50(14):7870-7878 https://doi.org/10.1021/acs.est.6b00156
  20. Edwards KR, Proffitt CE (2003) Comparison of wetland structural characteristics between created and natural salt marshes in southwest Louisiana, USA. Wetlands 23(2): 344-356 https://doi.org/10.1672/10-20
  21. Glud RN (2004) Marine eutrophication and benthic metabolism. In: Wassmann P, Olli K (eds) Drainage basin nutrient inputs and eutrophication: an integrated approach. University of Tromsoe, Tromsoe, pp 147-154
  22. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3-4):325-338 https://doi.org/10.1093/biomet/53.3-4.325
  23. Gower JC (2008) Effects of heavy metal contamination on the macrobenthic fauna in estuaries: the case of the Seine estuary. Mar Poll Bull 57(1-5):160-169 https://doi.org/10.1016/j.marpolbul.2007.10.012
  24. Groenendaal M (1979) On sulphide and the distribution of Arenicola marina in a tidal mud flat in the Dutch Wadden Sea. Neth J Sea Res 13:562-570 https://doi.org/10.1016/0077-7579(79)90026-7
  25. Herman PMJ, Middelburg JJ, Heip CHR (2001) Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project. Continent Shelf Res 21:2055-2071 https://doi.org/10.1016/S0278-4343(01)00042-5
  26. Koh CH, Shin HC (1988) Environmental characteristics and distribution of macrobenthos in a mudflat of the west coast of Korea (Yellow Sea). Neth J Sea Res 22:279-290 https://doi.org/10.1016/0077-7579(88)90030-0
  27. Koo BJ, Je JG (2002) A preliminary study on changes in macrobenthic assemblages in the fenced experimental plots for restoring tidal marsh, Hogok-ri tidal flat, west coast of Korea. Ocean and Polar Res 24:63-71 https://doi.org/10.4217/OPR.2002.24.1.063
  28. Koo BJ, Kwon KK, Hyun J-H (2007) Effect of environmental conditions on variation in the sediment-water interface created by complex macrofaunal burrows on a tidal flat. J sea Res 58(4):302-312 https://doi.org/10.1016/j.seares.2007.07.002
  29. McLachlan A (1996) Physical factors in benthic ecology: Effects of changing sand particle size on beach fauna. Mar Ecol-Prog Ser 131:205-217 https://doi.org/10.3354/meps131205
  30. McManus JW, Pauly D (1990) Measuring ecological stress: variations on a theme by R.M. Warwick. Mar Biol 106(2):305-308 https://doi.org/10.1007/BF01314814
  31. Mitsch WJ, Wilson RF (1996) Improving the success of wetland creation and restoration with know-how, time, and self-design. Ecol Appl 6(1):77-83 https://doi.org/10.2307/2269554
  32. Mucha AP, Vasconcelos MTSD, Bordalo AA (2003) Macrobenthic community in the Douroestuary: relations with trace metals and natural sediment characteristics. Environ Poll 121:169-180 https://doi.org/10.1016/S0269-7491(02)00229-4
  33. Oh SH, Lee KS, Jung WM (2016) Three-dimensional experiment and numerical simulation of the discharge performance of sluice passageway for tidal power plant. Renew Energ 92:462-473 https://doi.org/10.1016/j.renene.2016.02.023
  34. Pearson TH (1975) The benthic ecology of Loch Linnhe and Loch Eil, a sea-loch system on the west coast of scotland. IV. Changes in the benthic fauna attributable to organic enrichment. J Exp Mar Biol Ecol 20(1):37-41
  35. Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanangr Mar Biol Ann Rev 16:229-311
  36. Ryu J, Khim JS, Choi J-W, Hyun CS, An S, Park J, Kang D, Lee C-H (2011) Environmentally associated spatial changes of a macrozoobenthic community in the Saemangeum tidal flat, Korea. J Sea Res 65(4):390-400 https://doi.org/10.1016/j.seares.2011.03.003
  37. Simboura N, Zenetos A, Thessaloulegaki M, Pancucci MA, Nicolaidou A (1995) benthic communities of the infralittoral int he N. Sporades (Aegean Sea): a variety of biotopes encountered and analysed. Mar Biol 16(4):283-306
  38. Warwick RM, Clarke KR (1991) A comparison of some methods for benthic community structure. J Mar Biol Ass UK 71:225-244 https://doi.org/10.1017/S0025315400037528
  39. Wilson JG, Jeffrey DW (1994) Benthic biological pollution indices in estuaries. Environ Monit Assess 170(1):141-157 https://doi.org/10.1007/s10661-009-1222-0

Cited by

  1. Analyzing Vomit of Platalea minor (Black-faced Spoonbill) to Identify Food Components using Next-Generation Sequencing and Microscopy vol.36, pp.2, 2018, https://doi.org/10.11626/KJEB.2018.36.2.165