DOI QR코드

DOI QR Code

Fully Dynamic Algorithm for the Vertex Connectivity of Interval Graphs

선분 그래프의 정점 연결성에 대한 완전 동적 알고리즘

  • Kim, Jae-hoon (Department of Computer Engineering, Busan University of Foreign Studies)
  • Received : 2015.10.23
  • Accepted : 2015.11.30
  • Published : 2016.02.29

Abstract

A graph G=(V,E) is called an interval graph with a set V of vertices representing intervals on a line such that there is an edge $(i,j){\in}E$ if and only if intervals i and j intersect. In this paper, we are concerned in the vertex connectivity, one of various characteristics of the graph. Specifically, the vertex connectivity of an interval graph is represented by the overlapping of intervals. Also we propose an efficient algorithm to compute the vertex connectivity on the fully dynamic environment in which the vertices or the edges are inserted or deleted. Using a special kind of interval tree, we show how to compute the vertex connectivity and to maintain the tree in O(logn) time when a new interval is added or an existing interval is deleted.

선분 그래프(interval graph) G=(V,E)는 직선 상의 선분들을 나타내는 정점 집합 V와 간선 $(i,j){\in}E$는 선분 i와 j가 교차함을 나타내는 간선들의 집합 E로 이루어진다. 본 논문에서는 그래프의 여러 특성 중에서 정점 연결성(vertex connectivity)에 주목한다. 특별히 선분들이 겹쳐지는 모습으로 선분 그래프의 정점 연결성을 나타낸다. 또한 선분 그래프에서 정점이나 간선이 추가 되거나 삭제되는 완전 동적 (fully dynamic) 환경에서 정점 연결성을 계산하는 효율적인 알고리즘을 제안할 것이다. 특별한 형태의 선분 트리(interval tree)를 사용하여 새로운 선분이 추가되거나 삭제되는 상황 하에서 정점 연결성을 계산하고 트리를 유지하는데 O(logn) 시간이 소요됨을 보일 것이다.

Keywords

References

  1. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, New York, NY: Academic Press, 1980.
  2. J. M. Keil, "Finding hamiltonian circuits in interval graphs," Information Processing Letters, vol. 20, pp. 201-206, May 1985. https://doi.org/10.1016/0020-0190(85)90050-X
  3. G. Ramalingam and C. Pandu Rangan, "A unified approach to domination problems on interval graphs," Information Processing Letters, vol. 27, pp. 271-274, April 1988. https://doi.org/10.1016/0020-0190(88)90091-9
  4. A. Srinivasa Rao and C. Pandu Rangan, "Linear algorithm for domatic number problem on interval graphs," Information Processing Letters, vol. 33, pp. 29-33, Oct. 1989. https://doi.org/10.1016/0020-0190(89)90184-1
  5. H. Broersma, Jiri Fiala, P. A. Golovach, T. Kaiser, D. Paulusma, and A. Proskurowski, "Linear-time algorithms for scattering number and hamilton-connectivity of interval graphs," Journal of Graph Theory, vol. 79, pp. 282-299, Aug. 2015. https://doi.org/10.1002/jgt.21832
  6. S. Even and R. E. Tarjan, "Network flow and testing graph connectivity," SIAM Journal on Computing, vol. 4, pp. 507-518, Oct. 1975. https://doi.org/10.1137/0204043
  7. P. K. Ghosh and M. Pal, "An Efficient algorithm to solve connectivity problem on trapezoid graphs," Journal of Applied Mathematics and Computing, vol. 24, pp. 141-154, May 2007. https://doi.org/10.1007/BF02832306
  8. A. Ilic, "Efficient algorithm for the vertex connectivity of trapezoid graph," Information Processing Letters, vol. 113, pp. 398-404, May 2013. https://doi.org/10.1016/j.ipl.2013.02.012
  9. T. W. Kao and S. J. Horng, "Computing k-vertex connectivity on an interval graph," in Proceeding of the 13th International Conference on Parallel Processing, pp. 218-221, 1994.
  10. D. Eppstein, Z. Galil, G, and F. Italiano, Agorithms and Theoretical Computing Handbook, CRC Press, 1999.
  11. J. Holm, K. de Lichtenberg, and M. Thorup, "Polylogarithmic deterministic fully dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity," Journal of ACM, vol. 48, pp. 723-760, July 2001. https://doi.org/10.1145/502090.502095
  12. C. Crespelle, "Fully dynamic representations of interval graphs," in Proceeding of the 35th International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 77-87, 2009.