DOI QR코드

DOI QR Code

온칩버스를 이용한 런타임 하드웨어 트로이 목마 검출 SoC 설계

Run-Time Hardware Trojans Detection Using On-Chip Bus for System-on-Chip Design

  • Kanda, Guard (Department of Information and Communication Engineering, Hanbat National University) ;
  • Park, Seungyong (Department of Information and Communication Engineering, Hanbat National University) ;
  • Ryoo, Kwangki (Department of Information and Communication Engineering, Hanbat National University)
  • 투고 : 2015.12.31
  • 심사 : 2016.02.03
  • 발행 : 2016.02.29

초록

본 논문에서는 감염된 IP로부터 악성 공격을 감지하고 예방하기 위한 안전하고 효율적인 온칩버스를 기술한다. 대부분의 상호-연결 시스템(온칩버스)은 모든 데이터와 제어 신호가 밀접하게 연결되어있기 때문에 하드웨어 말웨어 공격에 취약하다. 본 논문에서 제안하는 보안 버스는 개선된 아비터, 어드레스 디코딩, 마스터와 슬레이브 인터페이스로 구성되며, AHB (Advanced High-performance Bus)와 APB(Advance Peripheral Bus)를 이용하여 설계되었다. 또한, 보안 버스는 매 전송마다 아비터가 마스터의 점유율을 확인하고 감염된 마스터와 슬레이브를 관리하는 알고리즘으로 구현하였다. 제안하는 하드웨어는 Xilinx ISE 14.7을 사용하여 설계하였으며, Virtex4 XC4VLX80 FPGA 디바이스가 장착된 HBE-SoC-IPD 테스트 보드를 사용하여 검증하였다. TSMC $0.13{\mu}m$ CMOS 표준 셀 라이브러리로 합성한 결과 약 39K개의 게이트로 구현되었으며 최대 동작주파수는 313MHz이다.

A secure and effective on-chip bus for detecting and preventing malicious attacks by infected IPs is presented in this paper. Most system inter-connects (on-chip bus) are vulnerable to hardware Trojan (Malware) attack because all data and control signals are routed. A proposed secure bus with modifications in arbitration, address decoding, and wrapping for bus master and slaves is designed using the Advanced High-Performance and Advance Peripheral Bus (AHB and APB Bus). It is implemented with the concept that arbiter checks share of masters and manage infected masters and slaves in every transaction. The proposed hardware is designed with the Xilinx 14.7 ISE and verified using the HBE-SoC-IPD test board equipped with Virtex4 XC4VLX80 FPGA device. The design has a total gate count of 39K at an operating frequency of 313MHz using the $0.13{\mu}m$ TSMC process.

키워드

참고문헌

  1. DARPA BAA 07 - 24 - solicitations-microsystems technology office [Internet]. Available : http://www.darpa.mil/mto/solicitations/baa07-24/index.html
  2. M Tehranipoor, H Salmani X. Zhang, Integrated Circuit Authentication, Springer publishers, 2014.
  3. Bhunia et al.: "Hardware Trojan Attacks: Threat Analysis and Countermeasures," in Proceedings of the IEEE, vol 102, no.8, pp 1229-1247, Aug. 2014. https://doi.org/10.1109/JPROC.2014.2334493
  4. M. Tehranipoor and F. Koushanfar, "A Survey of Hardware Trojan Taxonomy and Detection," in the IEEE Design & Test of Computers, vol.27, no.1, pp. 10-25, Feb. 2010.
  5. S. Adee, "The hunt for the kill switch," Spectr. IEEE 45 (5) May (2008) 34-39
  6. Y. Alkabani and F. Koushanfar, "Consistency-based characterization for IC Trojan detection," in Proceedings of International Conference on Computer-Aided Design, pp. 123-127, Nov. 2009.
  7. D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi and B. Sunar, "Trojan Detection using IC Fingerprinting," in Proceedings of the Symposium on Security and Privacy, pp. 296-310, May 2007.
  8. Y. Jin and Y. Makris, "Hardware Trojan Detection using Path Delay Fingerprint," in Proceedings of the IEEE International Workshop on Hardware-Oriented Security and Trust (HOST 2008), pp. 51-57, Jun. 2008.
  9. L.W. Kim and J. D. Villasenor, "A System -On-Chip Bus Architecture for Thwarting Integrated Circuit Trojan Horses" IEEE transaction on VLSI, Oct. 2011.