DOI QR코드

DOI QR Code

Optimization of Z-R relationship in the summer of 2014 using a micro genetic algorithm

마이크로 유전알고리즘을 이용한 2014년 여름철 Z-R 관계식 최적화

  • Lee, Yong Hee (Numerical Data Application Division, National Institute of Meteorological Sciences) ;
  • Nam, Ji-Eun (Numerical Data Application Division, National Institute of Meteorological Sciences) ;
  • Joo, Sangwon (Numerical Data Application Division, National Institute of Meteorological Sciences)
  • 이용희 (국립기상과학원 수치자료응용과) ;
  • 남지은 (국립기상과학원 수치자료응용과) ;
  • 주상원 (국립기상과학원 수치자료응용과)
  • Received : 2015.08.13
  • Accepted : 2016.01.04
  • Published : 2016.02.25

Abstract

The Korea Meteorological Administration has operated the Automatic Weather Stations, of the average 13 km horizontal resolution, to observe rainfall. However, an additional RADAR network also has been operated in all-weather conditions, because AWS network could not observed rainfall over the sea. In general, the rain rate is obtained by estimating the relationship between the radar reflectivity (Z) and the rainfall (R). But this empirical relationship needs to be optimized on the rainfall over the Korean peninsula. This study was carried out to optimize the Z-R relationship in the summer of 2014 using a parallel Micro Genetic Algorithm. The optimized Z-R relationship, $Z=120R^{1.56}$, using a micro genetic algorithm was different from the various Z-R relationships that have been previously used. However, the landscape of the fitness function found in this study looked like a flat plateau. So there was a limit to the fine estimation including the complex development and decay processes of precipitation between the ground and an altitude of 1.5km.

기상청에서는 강우량을 관측하기 위하여 평균 13km 해상도의 자동기상관측망을 운영하고 있다. 그러나 자동기상관측망은 육지에서만 관측이 가능하므로 기상레이더 관측망을 추가로 운영하여 해상을 포함한 우리나라 전역을 전천후로 관측하고 있다. 일반적으로 레이더로부터 추정하는 강우강도는 레이더 반사도(Z)와 지상관측자료의 강우강도(R)의 관계를 추정한 Z-R 관계식을 구하여 사용하고 있다. 하 지 만 이 관 계 식 은 경험식에 의존하고 있어 한반도의 강우특성에 맞게 최적화 할 필요가 있다. 이 연구에서는 마이크로 유전알고리즘을 병렬화하고 2014년도 여름철에 대한 Z-R 관계식의 최적화를 수행하였다. 마이크로 유전알고리즘을 이용하여 최적화한 Z-R 관계식은 기존에 사용하던 관계식과는 다르게 $Z=120R^{1.56}$이 추정되었다. 하지만 마이크로 유전알고리즘의 최적화과정에서 탐색한 적합도 함수의 위상공간이 평평한 고원의 형태에 가까웠다. 이러한 결과는 1.5km 고도와 지상 사이에 복잡한 강수의 발달과 소멸과정이 포함되어 있어 정교한 추정에 한계가 있음을 보여주고 있다.

Keywords

References

  1. Jordan, P. W., A. W. Seed, and G. L. Austin, "Sampling errors in radar estimates rainfall", J. Geophys. Res., 105 (D2), pp. 2247-2257, 2000. https://doi.org/10.1029/1999JD900130
  2. Vignal and W. F. Krajewski, "Large-sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimates". J. Hydrometeor., Vol. 2, pp. 490-504, 2001. https://doi.org/10.1175/1525-7541(2001)002<0490:LSEOTM>2.0.CO;2
  3. Collier, C. G., Applications of Weather Radar System: A Guide to Uses of Radar in Meteorology and Hydrology, John Wiley & Sons, pp. 383, 1996.
  4. Battan, L. J., Radar Observation of the Atmosphere, University of Chicago Press, pp. 324, 1973.
  5. Gabella, M., and G. Perona, "Simulation of the orographic influence on weather radar using geometric-optics approach", J. Atmos. Oceanic Tech., Vol. 15, pp. 1485-1494, 1998. https://doi.org/10.1175/1520-0426(1998)015<1485:SOTOIO>2.0.CO;2
  6. Hildebrand, P. H., "Iterative correction for attenuation of 5cm radar in rain", J. Appl. Meteor., Vol. 17, pp. 508-514, 1978. https://doi.org/10.1175/1520-0450(1978)017<0508:ICFAOC>2.0.CO;2
  7. Chumchean, S., A. Seed, and A. Sharma, "Application of scaling in radar reflectivity for correcting range dependent bias in climatological radar rainfall estimates", J. Atmos. Oceanic Tech., 21, pp. 1545-1555, 2004. https://doi.org/10.1175/1520-0426(2004)021<1545:AOSIRR>2.0.CO;2
  8. Cluckie, I. D., K. A. Tilford, and G. W. Shepard, Radar signal quantization and its influence on rainfall runoff model, Hydrological Applications of Weather Radar, I. D. Cluckie, C. G. Collier, Ed., Ellis Horwood, pp. 440-451, 1991.
  9. J. S. Marshall and W. M. Palmer, "The distribution of raindrops with size", J. Atmos. Sci., Vol. 5, pp. 165-166, 1948.
  10. R. S. Sekhon and R. C. Srivastava, "Doppler Radar Observations of Drop-Size Distributions in a Thunderstorm", J. Atmos. Sci., Vol. 28, pp. 983-994, 1971. https://doi.org/10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2
  11. R. S. Sekhon and R. C. Srivastava, "Snow Size Spectra and Radar Reflectivity", J. Atmos. Sci., Vol. 27, pp. 299-307, 1970. https://doi.org/10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2
  12. D. E. Goldberg, Genetic Algorithm in search, optimization, and machine learning, Addison-Wesley, 1989.
  13. K. Krishnakumar, "Micro-genetic Algorithm for Stationary and Non-stationary Function Optimization", SPIE, Intelligent Control and Adaptive Systems, Vol. 1196, pp. 282-296, 1989.
  14. He, Y. and C. Ding, Multi Program-Components Handshaking (MPH) Utility, Version 4 User's Manual, Lawrence Berkely National Laboratory, pp. 1-40. 2003.
  15. Gunn R. and G. Kinzer, "The terminal fall velocity of all for water droplets in stagnant air", J. Meteorol., Vol. 6, pp. 243-248, 1949. https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
  16. Joss, J., K. Schram, J. C. Thams, and A. Waldvogel, On the quantitative determination of precipitation by a radar, Scientific Communication No, 63, Research Dept. of the Federal Commission on the Study of Hail Formation and Hail Suppression, Ticinese Observatory of the Swiss Central Meteorological Institute, Federal Institute of Technology, Zurich, pp. 38, 1970.