DOI QR코드

DOI QR Code

Performance Assessment of Solid Reinforced Concrete Columns with Triangular Reinforcement Details

삼각망 철근상세를 갖는 중실 철근콘크리트 기둥의 성능평가

  • Kim, Tae-Hoon (Technology Development Team, Samsung Construction & Trading Corporation) ;
  • Lee, Seung-Hoon (Technology Development Team, Samsung Construction & Trading Corporation) ;
  • Lee, Jae-Hoon (Dept. of Civil Engineering, Yeungnam University) ;
  • Shin, Hyun Mock (School Civil and Architectural Engineering, Sungkyunkwan University)
  • 김태훈 (삼성물산(주) 건설부문 기술개발팀) ;
  • 이승훈 (삼성물산(주) 건설부문 기술개발팀) ;
  • 이재훈 (영남대학교 건설시스템공학과) ;
  • 신현목 (성균관대학교 건축토목공학부)
  • Received : 2015.09.02
  • Accepted : 2015.11.09
  • Published : 2016.02.29

Abstract

The purpose of this study was to investigate the performance of solid reinforced concrete columns with triangular reinforcement details. The proposed reinforcement details has economic feasibility and rationality and makes construction periods shorter. A model of solid reinforced concrete columns with triangular reinforcement details was tested under a constant axial load and a quasi-static, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. The used numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated. As a result, proposed triangular reinforcement details for material quantity reduction was superior to existing reinforcement details in terms of required performance.

이 연구의 목적은 삼각망 철근상세를 갖는 중실 철근콘크리트 기둥의 성능을 파악하는데 있다. 제안된 철근상세는 경제성과 합리성을 갖으며 공사기간의 단축을 가져올 수 있다. 삼각망 철근상세를 갖는 중실 철근콘크리트 기둥 실험체에 일정 축하중 하에서 횡방향 반복하중을 가하는 준정적 실험을 수행하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 사용된 해석기법은 조사된 실험체에 대하여 하중단계에 따라 성능을 비교적 정확하게 예측하였다. 그 결과 제안된 삼각망 철근상세는 기존 철근상세와 동등 이상의 소요성능을 보임을 확인하였다.

Keywords

References

  1. Ministry of Land, Infrastructure and Transport. Korea Highway Bridge Design Code (Limit State Design Method), 2015.
  2. Korea Concrete Institute. Concrete Structural Design Code, 2012.
  3. Kim, T. H., Lee, J. H., and Shin, H. M., "Hollow Reinforced Concrete Bridge Column Systems with Reinforcement Details for Material Quantity Reduction: I. Development and Verification", Journal of the Earthquake Engineering Society of Korea, Vol.18, No.1, 2013, pp.1-8.
  4. Kim, T. H., Kim, H. Y., Lee, J. H., and Shin, H. M., "Hollow Reinforced Concrete Bridge Column Systems with Reinforcement Details for Material Quantity Reduction: II. Experiments and Analyses", Journal of the Earthquake Engineering Society of Korea, Vol.18, No.1, 2013, pp.9-18. https://doi.org/10.5000/EESK.2014.18.1.009
  5. AASHTO. AASHTO LRFD Bridge Design Specifications, 6th Edition, 2012.
  6. Park, K. S., Seo, H. Y., Kim, I. H., and Sun, C. H., "Seismic Behaviors of Circular RC Bridge Columns by Lap-splices Length of Longitudinal Reinforcements - An Analytical Study", Proceedings of EESK Conference. Vol.16, 2012, pp.79-82.
  7. Kim, I. H., Sun, C. H., Lee, S. H., Park, K. S., and Seo, H. Y., "Seismic Behaviors of Circular Sectional RC Bridge Columns with Various Lap-splice Lengths - An Experimental Study", Journal of the Earthquake Engineering Society of Korea, Vol.16, No.6, 2012, pp.47-56. https://doi.org/10.5000/EESK.2012.16.6.047
  8. Park, R., "Ductility Evaluation from Laboratory and Analytical Testing", Proc. of the Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, Vol.VII, Balkema, Rotterdam. 1988, pp.605-616.
  9. Kim, T. H., and Shin, H. M., "Analytical Study on Discontinuous Displacement in Reinforced Concrete Column- Footing Joint under Earthquake", Journal of the Korea Concrete Institute, Vol.12, No.6, 2000, pp.83-90.
  10. Kim, T. H., Lee, S. C., and Shin, H. M., "Analytical Study on Fatigue Behavior of Reinforced Concrete Bridge Piers under Earthquake", Journal of the Korea Concrete Institute, Vol.13, No.4, 2001, pp.389-396.
  11. Kim, T. H., Lee, K. M., Chung, Y. S., and Shin, H. M., "Seismic Damage Assessment of Reinforced Concrete Bridge Columns", Engineering Structures, Vol.27, No.4, 2005, pp.576-592. https://doi.org/10.1016/j.engstruct.2004.11.016
  12. Kim, T. H., Kim, Y. J., Kang, H. T., and Shin, H. M.. "Performance Assessment of Reinforced Concrete Bridge Columns Using a Damage Index", Canadian Journal of Civil Engineering, Vol.34, No.7, 2007, pp.843-855. https://doi.org/10.1139/l07-003
  13. Kim, T. H., Choi, J. H., Lee, J. H., and Shin, H. M., "Performance Assessment of Hollow RC Bridge Column Sections with Reinforcement Details for Material Qunatity Reduction", Magazine of Concrete Research, Vol.65, No.21, 2013, pp. 1277-1292. https://doi.org/10.1680/macr.13.00073
  14. Kim, T. H., Lee, J. H., and Shin, H. M., "Performance Assessment of Hollow Reinforced Concrete Bridge Columns with Triangular Reinforcement Details", Magazine of Concrete Research, Vol.66, No.16, 2014, pp.809-824. https://doi.org/10.1680/macr.13.00257
  15. Taylor, R. L., FEAP - A Finite Element Analysis Program, Version 7.2. Users Manual, Volume 1 and Volume 2. 2000.
  16. Mander, J. B., Priestley, M. J. N., and Park, R., "Theoretical Stress-strain Model for Confined Concrete", Journal of Structural Engineering, ASCE, Vol.114, No.8, 1988, pp.1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  17. Applied Technology Council. Seismic Evaluation and Retrofit of Concrete Buildings, ATC-40 Report, Redwood City, California, 1996.

Cited by

  1. Nonlinear Seismic Analysis of Hollow Cast-in-place and Precast RC Bridge Columns with Triangular Reinforcement Details vol.28, pp.6, 2016, https://doi.org/10.4334/JKCI.2016.28.6.713