DOI QR코드

DOI QR Code

Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs

다중벽 탄소나노튜브의 혼입량에 따른 시멘트 복합체의 유동성 및 강도 변화

  • Received : 2015.08.04
  • Accepted : 2015.10.28
  • Published : 2016.02.29

Abstract

With several different dosages of multi-walled CNTs which was 0.1, 0.3, and 0.5% of the weight of binder, the fluidity in fresh CNT cement composites, as well as the strength and strength development with age of the hardened composites were investigated in this experimental study. The experimental results from flow test indicated that the increase in the dosage of CNTs badly impacted on the workability of fresh composites, and the results from rheological measurements presented the decrease in plastic viscosity and the increase in yield stress according to the amount of CNTs. In addition, the thixotrophy in the flow curve obtained from the rheology test was observed more noticeably in the composites with higher dosage of CNTs. With the experiments on the strength properties, the improvement of both compressive and tensile strengths with the increase of CNTs dosage could be obtained. Moreover, early strength development by adding CNTs was found when it was compared with plain cementious matrix without CNT.

이 연구에서는 다중벽 탄소나노튜브(Multi-walled CNT) 혼입량을 Binder 중량 대비 0.1, 0.3, 0.5%로 다르게 하여 CNT 혼입량에 따른 CNT 보강 시멘트 복합체의 굳지 않은 상태에서의 유동특성, 강도 및 강도발현 특성 등을 살펴보았다. 유동특성에 대한 실험결과, CNT 혼입량이 증가함에 따라 굳기 전 상태의 작업성이 저하되는 것으로 나타났으며, 레올로지 실험에서는 CNT 혼입량 증가에 따라 소성점도의 감소와 항복응력의 증가를 확인할 수 있었다. 또한 레올로지 실험에서 얻은 흐름곡선에서는 낮은 전단속도에서의 틱소트로피 현상이 높은 CNT 혼입량에서 더욱 뚜렷하게 나타나는 것을 볼 수 있었다. CNT 혼입량 증가에 따른 강도특성 실험결과에서는 압축강도 및 인장강도 모두 CNT 혼입량이 증가함에 따라 향상되는 것으로 나타났으며, 압축강도에 대한 CNT 보강에 따른 강도향상 효과가 인장강도에 비해 더 크게 나타났다. 한편 재령별 강도 측정 결과에 따르면 CNT 혼입이 초기강도 발현에도 효과적인 것을 확인할 수 있었다.

Keywords

References

  1. Ijiima, S., "Helical Microtubules of Graphitic Carbon", Nature, Vol.354, 1991, pp.56-58. https://doi.org/10.1038/354056a0
  2. Yun, C. H., and Lee, H. S., "Carbon Nanotube Composite", Polymer Science and Technology, Vol.18, No.1, 2007, pp.1-4. https://doi.org/10.1002/pat.852
  3. Koo, B. K., Jung, K. S., and Kim, T. B., "Evaluation of Effective Toughness of Steel Fiber Reinforced Concrete", Journal of the Korea Concrete Institute, Vol.4, No.2, 1992, pp.103-110.
  4. Park, C. K., Noh, M. H., and Park, T. H., "Flexural and Workable Properties of High Performance Hybrid Fiber Reinforced Concrete", Journal of the Korea Concrete Institute, Vol.17, No.4, 2005. pp.543-550. https://doi.org/10.4334/JKCI.2005.17.4.543
  5. Kang, S. T., Kim, Y. Y., Lee, B. Y., and Kim, J. K., "Fiber Orientation Impacts on the Flexural Behavior of Steel Fiber Reinforced High Strength Concrete", Journal of the Korea Concrete Institute, Vol.20, No.6, 2008, pp.731-739. https://doi.org/10.4334/JKCI.2008.20.6.731
  6. Campillo, I., Dolado, J. S., and Porro, A., "High Performance Nanostructured Materials for Construction", Proceedings of the First International Symposium on Nanotechnology and Construction, The Royal Society of Chemistry, Paisley, Scotland, 23-25, June, 2003, pp.215-226.
  7. Li, G. Y., Wang, P. M., and Zhao, X., "Mechanical Behavior and Microstructures of Cement Composites Incorporating Surface-Treated Multi-Walled Carbon Nanotubes", Carbon, Vol.43, No.6, 2005, pp.1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017
  8. Brenner, M., Kavi, A. M., and Li, G. Y., Carbon nanotube fiber reinforced cement and concrete, United States Patent Application 20080134942.
  9. Chan, L. Y., and Andrawes, B., "Finite Element Analysis of Carbon Nanotube/Cement Composite with Degraded Bond Strength", Computational Materials Science, Vol.47, No.4, 2010, pp.994-1004. https://doi.org/10.1016/j.commatsci.2009.11.035
  10. Konsta-Gdoutos, M.S., Metaxa, Z.S., and Shah, S.P., "Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials", Cement and Concrete Research, Vol.40, 2010, pp.1052-1059. https://doi.org/10.1016/j.cemconres.2010.02.015
  11. Zhi, G., and Gao, Z., "Applications of Nanotechnology and Nanomaterials in Construcion", Proceedings of the 1st International Conference on Construction on Developing Countries (ICCIDC-1 '08), Advancing and Integrating Construction Education, Research & Practice, Pakistan, Iran, 2008.
  12. Rana, A.K., Rana, S.B., and Chaipanich, A., "Significance of Nanotechnology in Construction Engineering", International Journal of Recent Trends in Engineering, Vol.4, 2009, pp.46-48.
  13. Li, G.Y., Wang, P.M., and Zhao, X., "Pressure-Sensitive and Microstructure of Carbon Nanotube Reinforced Cement Composites", Cement and Concrete Composites, Vol.29, No.5, 2007, pp.377-382. https://doi.org/10.1016/j.cemconcomp.2006.12.011
  14. Ferro, G., Tulliani, J., and Musso, S., "Carbon Nanotubes Cement Composites", Proceedings of Cassino(FR), Italia, 13-15, June, 2011, pp.49-59.
  15. Luo, J., Duan, Z., and Li, H., "The Influence of Surfactant on the Processing of Multi-Walled Carbon Nanotubes in Reinforced Cement Matrix Composites", Physica Status Solidi A, Vol.206, No.12, 2009, pp.2783-2790.
  16. Makar, J. M., Margeson, J., and Luh, J., "Carbon Nanotube/ Cement Composites - Early Results and Potential Applications", Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, Canada, 2005, pp.1-10.
  17. Ipperico, M., Ferro, G., Musso, S., Tulliani, J. M., and Tagliaferro A., "Calcestruzzo Autocompattante Nanorinforzato (CNTSCC): Proprieta Meccaniche e Potenzialita", A. Atti del $20^{\circ}$ Convegno Nazionale del Gruppo Italiano Frattura (IGF), Torino, Italy, 2009, pp.103-112.
  18. Konsta-Gdoutos, M.S., Metaxa, Z.S., and Shah, S.P., "Multi-Scale Mechanical and Fracture Characteristics and Early-age Strain Capacity of High Performance Carbon Nanotube/Cement Nanocomposites", Cement and Concrete Composites, Vol.32, No.2, 2010, pp.110-115. https://doi.org/10.1016/j.cemconcomp.2009.10.007
  19. Sanchez, F., and Ince, C., "Microstructure and Macroscopic Properties of Hybrid Carbon Nanofiber/Silica Fume Cement Composites", Composites Science and Technology, Vol.69, 2009, pp.1310-1318. https://doi.org/10.1016/j.compscitech.2009.03.006
  20. Khayat, K.H., Saric-Coric, M., and Liotta, F., "Influence of Thixotropy on Stability Characterisitcs of Cement Grout and Concrete", ACI Materials Journal, Vol.99, No.3, 2002, pp.234-241.
  21. Ferraris, C.F., Obla, K.H., and Hill, R., "The Influence of Mineral Admixtures on The Rheology of Cement Paste and Concrete", Cement and Concrete Research, Vol.13, No.2, 2001, pp.245-255.
  22. Maker, J.M., and Chan, G.W., "Growth of Cement Hydration Products on Single-Walled Carbon Nanotubes", Journal of the American Ceramic Society, Vol.92, No.6, 2009, pp.1303-1310. https://doi.org/10.1111/j.1551-2916.2009.03055.x
  23. Li, H., Xiao, H.-G., Yuan, J., and Ou, J., "Microstructure of Cement Mortar with Nano-Particles", Composites Part B: Engineering, Vol.35, 2004, pp.185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  24. Li, G.Y., Wang, P.M., and Zhao, X., "Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes", Carbon, Vol.43, 2005, pp.1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017