DOI QR코드

DOI QR Code

Enhanced Efficiency of Transmit and Receive Module with Ga Doped MgZnO Semiconductor Device by Growth Thickness

  • Shim, Bo-Hyun (Daegu Center, Defense Agency for Technology and Quality) ;
  • Jo, Hee-Jin (Department of Analysis Assessment, Defense Agency for Technology and Quality) ;
  • Kim, Dong-Jin (Daegu Center, Defense Agency for Technology and Quality) ;
  • Chae, Jong-Mok (Daegu Center, Defense Agency for Technology and Quality)
  • 투고 : 2015.05.21
  • 심사 : 2016.01.09
  • 발행 : 2016.02.28

초록

The structural, electrical properties of Ga doped MgZnO transparent conductive oxide (TCO) films by ratio-frequency(RF) magnetron sputtering were investigated. Ga doped MgZnO TCO films were deposited on the sapphire substrates at $200^{\circ}C$ varying growth thickness 200 to 600 nm. The optical properties of Ga doped MgZnO TCO films were showed above 85% transmittance from 300 to 1000 nm region. In addition, the current density ($J_{SC}$) of $Cu(In,Ga)Se_2$ (CIGS) solar cells was improved by using the MgZnO:Ga films of 500 nm thickness because of outstanding electrical properties. The $Cu(In,Ga)Se_2$ solar cells with MgZnO:Ga transparent conducing layer yielded an efficiency of 9.8% with current density ($31.8mA/cm^2$), open circuit voltage (540.2 V) and fill factor (62.2) under AM 1.5 illumination.

키워드

참고문헌

  1. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, CIGS absorbers and processes, Prog.Photovoltaics vol. 18 (2010) 453-466. https://doi.org/10.1002/pip.969
  2. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films, Nat. Mater. vol. 10 (2011) 857-861. https://doi.org/10.1038/nmat3122
  3. Z. A. Wang, J. B. Chu, H. B. Zhu, Z. Sun, Y. W. Chen, and S. M. Huang, Growth of ZnO:Al films by RF sputtering at room temperature for solar cell applications, Solid-State Electron.vol. 53 (2009) 1149-1153. https://doi.org/10.1016/j.sse.2009.07.006
  4. T. Minami, S. Suzuki, and T. Miyata, Transparent conducting impurity-co-doped ZnO:Al thin films prepared by magnetron sputtering, Thin Solid Films vol. 398 (2001) 53-58.
  5. C. Yang, X. M. Li, X. D. Gao, X. Cao, R. Yang, and Y. Z. Li, ZnMgAlO based transparent conducting oxides with modulatable bandgap, Solid State Commun. vol. 151 (2011) 264-277. https://doi.org/10.1016/j.ssc.2010.11.008
  6. J. C. Lee, K. H. Kang, S. K. Kim, K. H. Yoon, and I. j. Park, RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu(In,Ga)Se2-based solar cell applications, Solar Energy Materials and Solar Cells vol. 64 (2000) 185-195. https://doi.org/10.1016/S0927-0248(00)00069-6
  7. T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol. vol. 20 (2005) S35-S44. https://doi.org/10.1088/0268-1242/20/4/004
  8. S. Calnan, and A. N. Tiwari, High mobility transparent conducting oxides for thin film solar cells, Thin Solid Films vol. 518 (2010) 1839-1849. https://doi.org/10.1016/j.tsf.2009.09.044
  9. S.W. Shin, I. Y. Kim, G. H. Lee, G. L. Agawane, A. V. Mohokar, G. S. Heo, J. H. Kim, J. Y. Lee, Design and growth quaternary Mg and GacodopedZnO thin films with transparent conductive characteristics, Cryst. Growth Des. vol. 11 (2011) 4819-4824. https://doi.org/10.1021/cg2005387
  10. Z. Chen, G. Fang, C. Li, S. Sheng, G. Jie, X. Z. Zhao, Fabrication and vacuum annealing of transparent conductive Ga-doped Zn0.9Mg0.1O thin films prepared by pulsed laser deposition technique, Appl. Surf. Sci. vol. 252 (2006) 8657-8661. https://doi.org/10.1016/j.apsusc.2005.12.018