바람그늘의 기울기가 횡사구의 지형발달에서 담당하는 역할 -거동 공간상의 동역학적 분석을 중심으로-

The Roles of Wind Shadow Aspect Ratio upon the Behaviors of Transverse Dunes : A Dynamics Analysis on the Behavior Space

  • 류호상 (전북대학교 사범대학 지리교육과)
  • RHEW, Hosahng (Department of Geography Education, Chonbuk National University)
  • 투고 : 2016.11.10
  • 심사 : 2016.11.25
  • 발행 : 2016.11.30

초록

횡사구는 높이에 반비례하는 속도로 이동하므로 속도가 빠른 작은 사구가 속도가 느린 큰 사구에 계속 충돌한다. 충돌이 병합으로만 이어지면 일정한 규모의 사구열이 정상상태를 유지한 채 이동하는 현상은 설명할 수 없다. 최근 연구들은 사구의 충돌이 병합만을 유발하는 것이 아니라 모래의 재분배로 이어질 수 있다는 데 주목한다. 반면 사구 배후에 발달하는 바람그늘의 역할에 대해서는 아직 상세한 분석이 이루어지지 않았다. 이 연구는 기존 연구들을 토대로 횡사구 거동을 기술하는 지배 방정식을 유도하고, 횡사구의 지형발달을 '거동 공간' 상의 궤적으로 치환 분석하는 기법을 이용하여 바람그늘이 횡사구 지형발달에서 담당하는 역할을 규명하고자 한 것이다. 이를 위해 횡사구를 위치와 높이를 지닌 막대로 단순화하고, 사구의 형태 비율적 특징과 바람맞이 사면에 따른 풍속의 증가 현상, 사구의 모래포집 효율 등의 개념을 토대로 횡사구의 이동과 성장을 결정하는 관계식을 유도하였다. 유도된 관계식은 인접한 두 사구열 높이의 순서쌍으로 정의되는 평면(거동 공간) 상에서 사구의 거동 양상을 결정하는 영역과 사구의 진화 방향을 지시하는 벡터장으로 표현된다. 분석 결과 바람그늘의 기울기는 거동 공간에 수렴 영역을 생성하는 역할을 하지는 못하며, 다만 횡사구 지형발달의 경로에 영향을 미치는 요인으로 작용한다. 이 논문의 모형은 횡사구의 지형 안정성을 재현하지는 못했지만, 사구 간격-높이 관계의 지수를 관측값과 유사하게 제시한다는 점에서 주목할 만하다.

The empirical law that transverse dunes migrate inversely with their heights leads logically to the prediction that multiple dune ridges will converse to a single huge dune by merging. This contradicts the existence of the steady state dune fields on the Earth. The recent studies have emphasized dune collisions as a key mechanism to the stability of dunefield. The roles of wind shadow aspect ratio, however, have yet to be fully explored. This research aims to investigate the potential roles of wind shadow aspect ratio in the dynamical behaviors of transverse dune field. The simplified model is established for this, based upon allometric properties of transverse dunes, wind speedup on the stoss slope and sand trapping efficiency. The derived governing equations can be transformed to the zoning criteria and vector field for dune evolution. The dynamics analysis indicates that wind shadow aspect ratios do not produce convergent areas on the behavior space; rather, they just act as one of the factors that affect the trajectories of dune evolution. Though the model cannot represent the stability of dune field, but seem to produce a reasonable exponent for dune spacing-height relations.

키워드

참고문헌

  1. Anderson, R.S. and Hallet, B., 1986, Sediment transport by wind: toward a general model, Geological Society of America Bulletin, 97(5), 523-535. https://doi.org/10.1130/0016-7606(1986)97<523:STBWTA>2.0.CO;2
  2. Anderson, R.S., 1988, The pattern of grainfall deposition in the lee of aeolian dunes, Sedimentology, 35, 175-188. https://doi.org/10.1111/j.1365-3091.1988.tb00943.x
  3. Andreotti, B., Claudin, P. and Douady, S., 2002, Selection of dune shapes and velocities. Part 1: Dynamics of sand, wind and barchans, The European Physical Journal B, 28, 321-339. doi:10.1140/epjb/e2002-00236-4.
  4. Bagnold, R.A., 1954, The physics of blown sand and desert dunes, Chapman & Hall.
  5. Diniega, S., Glasner, K. and Byrne, S., 2010, Long-time evolution of models of aeolian sand dune fields: influence of dune formation and collision, Geomorphology, 121, 55-68. https://doi.org/10.1016/j.geomorph.2009.02.010
  6. Ewing and Kocurek (2010) "Aeolian dune-field pattern boundary conditions, Geomorphology, 114, 175-187. https://doi.org/10.1016/j.geomorph.2009.06.015
  7. Hersen, P. and Douady, S., 2005, Collision of barchan dunes as a mechanism of size regulation, Geophysical Research Letters, 32, L21403, DOI:10.1029/2005GL024179.
  8. Jackson, P.S. and Hunt, J.C.R., 1975, Turbulent wind flow over a low hill, Quarterly Journal of the Royal Meteorological Society, 101, 929-955. https://doi.org/10.1002/qj.49710143015
  9. Kocurek, G., Ewing, R.C. and Mohrig, D., 2010, How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary conditions, Earth Surface Processes and Landforms, 35, 51-63. https://doi.org/10.1002/esp.1913
  10. Kroy, K., Sauermann, G. and Herrmann, H.J., 2002, Minimal model for sand dunes, Physical Review Letters, 88(5), 054301, DOI: 10.1103/PhysRevLett.88.054301.
  11. Lancaster, N., 1985, Variation in wind velocity and sand transport on the windward flanks of desert and dunes, Sedimentology, 32, 581-593. https://doi.org/10.1111/j.1365-3091.1985.tb00472.x
  12. Lancaster, N., 1988, Controls of eolian dune size and spacing, Geology, 16, 972-975. https://doi.org/10.1130/0091-7613(1988)016<0972:COEDSA>2.3.CO;2
  13. Lee, J.H., Sousa, A.O., Parteli, E.J.R. and Herrmann, H.J., 2005, Modelling formation and evolution of transverse dune fields, International Journal of Modern Physics C, 16(12), 1879-1892. https://doi.org/10.1142/S0129183105008400
  14. Momiji, H. and Bishop, S., 2002, Estimating the windward slope profile of a barchan dune, Sedimentology, 49, 467-481. https://doi.org/10.1046/j.1365-3091.2002.00455.x
  15. Momiji, H. and Warren, A., 2000, Relations of sand trapping efficiency and migration speed of transverse dunes to wind velocity, Earth Surface Processes and Landforms, 25, 1069-1084. https://doi.org/10.1002/1096-9837(200009)25:10<1069::AID-ESP117>3.0.CO;2-D
  16. Momiji, H., Carretero-Gonzalez, R., Bishop, S.R. and Warren, A., 2000, Simulation of the effect of wind speedup in the formation of transverse dune fields, Earth Surface Processes and Landforms, 25, 905-918. https://doi.org/10.1002/1096-9837(200008)25:8<905::AID-ESP112>3.0.CO;2-Z
  17. Murray, A.B., Goldstein, E.B. and Coco, Giovanni, 2014, The shape of patterns to come: from initial formation to long-term evolution, Earth Surface Processes and Landforms, 39, 62-70. https://doi.org/10.1002/esp.3487
  18. Nield, J.M. and Baas, A.C.W., 2008, Investigating parabolic and nebkha dune formation using a cellular automaton modelling approach, Earth Surface Processes and Landforms, 33, 724-740. https://doi.org/10.1002/esp.1571
  19. Parteli, E.J.R. and Herrmann, H.J., 2003, A simple model for a transverse dune field, Physica, A, 327, 554-562.
  20. Parteli, E.J.R., Duran, O., Tsoar, H., Schwammle, V. and Herrmann, H.J., 2009, Dune formation under bimodal winds, Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22085-22089. doi: 10.1073/pnas.0808646106.
  21. Pelletier, J.D., 2009, Controls on the height and spacing of eolian ripple and transverse dunes: A numerical modeling investigation, Geomorphology, 105, 322-333. https://doi.org/10.1016/j.geomorph.2008.10.010
  22. Ritter, D.F., Kochel, R.C. and Miller, J.R., 2011, Process Geomorphology (5th ed.), Waveland Press.
  23. Sauermann, G., Rognon, P., Poliakov, A. and Herrmann, H.J., 2000, The shape of the barchan dunes of Southern Morocco, Geomorphology, 36, 47-62. https://doi.org/10.1016/S0169-555X(00)00047-7
  24. Strogatz, S.H., 1994, Nonlinear Dynamics and Chaos, Addison-Wesley Publishing Company,
  25. Walker, I.J. and Nickling, W.G., 2002, Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes, Progress in Physical Geography, 26(1), 47-75. https://doi.org/10.1191/0309133302pp325ra
  26. Wasson, R.J. and Hyde, R., 1983, Factors determining desert dune type, Nature, 304, 337-339. https://doi.org/10.1038/304337a0
  27. White, B.R. and Schulz, J.C., 1977, Magnus effect in saltation, Journal of Fluid Mechanics, 81, 497-512. https://doi.org/10.1017/S0022112077002183