Anti-Oxidant and Anti-Inflammatory Activities of Various Organ Extracts from Trichosanthes kirilowii Maxim.

하늘타리(Trichosanthes kirilowii Maxim.) 부위별 추출물의 항산화 및 항염증 활성

  • Park, Mi Jin (Division of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Kang, Young-Hwa (Division of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University)
  • Received : 2016.07.25
  • Accepted : 2016.12.12
  • Published : 2016.12.30

Abstract

In this study, antioxidant and anti-inflammatory activities of the extract of different organs such as seed, fruit and root from Trichosanthes kirilowii Maxim. (TKM) were investigated in vitro. Among organs of TKM, the methanol extract of seed showed weak 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities with $10.4{\pm}0.1%$ and $25.5{\pm}1.1%$ at $50{\mu}g/mL$ and $100{\mu}g/mL$, respectively, and strong 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging activities with $72.4{\pm}6.3%$ and $96.4{\pm}2.3%$ at $50{\mu}g/mL$ and $100{\mu}g/mL$, respectively. Anti-inflammatory effects of the extracts were investigated by measuring nitric oxide (NO) production, mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced Raw 264.7 macrophage cells. The methanol extracts of seed and fruit at $50{\mu}g/mL$ potently suppressed LPS-stimulated production of NO and reduced the expression of iNOS mRNA. The methanol extracts of seed and fruit also reduced the expression of COX-2 mRNA remarkably. Therefore, seed and fruit of TKM may be utilized for a wide range of health benefits associated with antioxidant and anti-inflammatory activities.

Keywords

References

  1. Saghazadeh, A., Hafizi, S. and Rezaei, N. (2015) Molecular mechanisms of aging-associated inflammation. Int. Immunopharmacol. 28: 655-665. https://doi.org/10.1016/j.intimp.2015.07.044
  2. Sarkar, D. and Fisher, P. B. (2006) Molecular mechanisms of aging-associated inflammation. Cancer lett. 236: 13-23. https://doi.org/10.1016/j.canlet.2005.04.009
  3. Ryu, J. H., Park, H. J., Jeong, Y. Y., Han, S., Shin, J. H., Lee, S. J., Kang, M. J., and Kang, D. (2015) Aged red garlic extract suppresses nitric oxide production in lipopolysac-charide-treated RAW 264.7 macrophages through inhibition of NF-kappa B. J.med. food. 18: 439-445. https://doi.org/10.1089/jmf.2014.3214
  4. Akihisa, T., Kokke, W. C. M. C., Kimura, Y. and Tamura, T. (1993) Isokarounidiol [D-C-Friedooleana-6,8-Diene-3- Alpha,29-Diol] - the 1st naturally-occurring triterpene with a delta-6,8-conjugated diene system - Iodine-mediated dehydrogenation and isomerization of Its diacetate. J. Organic. Chem. 58: 1959-1962. https://doi.org/10.1021/jo00059a063
  5. Bredt, D. S. and Snyder, S. H. (1994) Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron, 13: 301-313. https://doi.org/10.1016/0896-6273(94)90348-4
  6. Chun, K. S. and Surh, Y. J. (2004) Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem. Pharmacol. 68: 1089-1100. https://doi.org/10.1016/j.bcp.2004.05.031
  7. Videla, L. A. and Fernandez, V. (1988) Biochemical aspects of cellular oxidative stress. Arch. Biol. Med. Exp. 21: 85-92.
  8. Huang, Y., He, P., Bader, K. P., Radunz, A. and Schmid, G. H. (2000) Seeds of Trichosanthes kirilowii, an energy-rich diet. Zeitschrift fur Naturforschung. C, J. biosci. 55: 189-194.
  9. Akihisa, T., Kokke, W. C. M. C., Tamura, T. and Nambara, T. (1992) 5-Dehydrokarounidiol [D-C-Friedo-Oleana-5,7,9 (11)-Triene-3-Alpha,29-Diol], a novel triterpene from Trichosanthes kirilowii Maxim. Chem. Pharm. Bull. 40: 3280-3283. https://doi.org/10.1248/cpb.40.3280
  10. Akihisa, T., Kokke, W. C. M. C., Tamura, T. and Nambara, T. (1992) 7-Oxodihydrokarounidiol [7-Oxo-Dc-Friedo-Olean- 8-Ene-3-Alpha,29-Diol], a novel triterpene from Trichosanthes kirilowii. Chem. Pharm. Bull. 1992, 40, 1199-1202. https://doi.org/10.1248/cpb.40.1199
  11. Fan, X. M., Chen, G., Sha, Y., Lu, X., Shen, M. X., Ma, H. M. and Pei, Y. H. (2012) Chemical constituents from the fruits of Trichosanthes kirilowii. J. Asian Nat. Prod. Res. 14: 528-532. https://doi.org/10.1080/10286020.2012.672410
  12. Kitajima, J. and Tanaka, Y. (1989) Studies on the constituents of trichosanthes root. I. Constituents of roots of Trichosanthes kirilowii Maxim. var. japonicum Kitam. Yakugaku zasshi. 109: 250-255. https://doi.org/10.1248/yakushi1947.109.4_250
  13. Ozaki, Y., Xing, L. and Satake, M. (1996) Antiinflammatory effect of Trichosanthes kirilowii Maxim, and its effective parts. Biol. Pharm. Bull. 19: 1046-1048. https://doi.org/10.1248/bpb.19.1046
  14. Dietz, B. M., Kang, Y. H., Liu, G. W., Eggler, A. L., Yao, P., Chadwick, L. R., Pauli, G. F., Farnsworth, N. R., Mesecar, A. D., Breemen, R. B. and Bolton, J. L. (2005) Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18: 1296-1305. https://doi.org/10.1021/tx050058x
  15. Re, R., Pellegrini, N., Protggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Bio. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  16. Je, J. Y., Park, P. J., Kim E. K. and Ahn C. B. (2009) Antioxidant and angiotensin I converting enzyme inhibitory activity of Bambusae caulis in Liquamen. Food Chem, 113: 932-935. https://doi.org/10.1016/j.foodchem.2008.08.022
  17. Marcocci, L., Maguire, J. J., Droylefaix, M. T. and Packer, L. (1994) The nitric oxide-scavenging properties of Ginkgo biloba extract Egb-761. Biochem. Biophys. Res. Commun. 201: 748-755. https://doi.org/10.1006/bbrc.1994.1764
  18. Kedare, S. B. and Singh, R. P. (2011) Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48: 412-422. https://doi.org/10.1007/s13197-011-0251-1
  19. Martysiak-Zurowska, D. and Wenta, W. (2012) A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. Acta. Sci. Pol. Technol. Alimen. 11: 83-89.
  20. Noh, J. E., Yoon, S. R, Lim, A. K., Kim, H. J., Huh, D., Kim, D. I., (2012) A study on the yield of functional components of citrus peel extracts using optimized hot water extraction and enzymatic hydrolysis. Kor. J. Food Cookery Sci. 28: 51-55. https://doi.org/10.9724/kfcs.2012.28.1.051
  21. Kim, B. A., (2014) Anti-oxidant and anti-inflammatory activities of Zanthoxylum schinifolium. J. Kor. Oil Chem. Soc. 31:440-445. https://doi.org/10.12925/jkocs.2014.31.3.440
  22. Zhoh, C. K., Um, T. Y., Kim, J. C., (2007) Antioxidantive effectiveness of Trichosanthes kirilowii Maximowicz extracts. J. Kor. Ind. Eng. Chem. 18:625-627.
  23. Hseu, Y. C., Wu, F. Y., Wu, J. J., Chen, J. Y., Chang, W. H., Lu, F. J., Lai, Y. C. and Yang, H. L. (2005) Anti-inflammatory potential of Antrodia camphorata through inhibition of NOS, COX-2 and cytokines via the NF-kappa B pathway. Int. immunopharmacol. 5: 1914-1925. https://doi.org/10.1016/j.intimp.2005.06.013
  24. Akihisa, T., Yasukawa, K., Kimura, Y., Takido, M., Kokke, W. C. and Tamura, T. (1994) Five D:C-friedo-oleanane triterpenes from the seeds of Trichosanthes kirilowii Maxim. and their anti-inflammatory effects. Chem. Pharm. Bull. (Tokyo). 42: 1101-1105. https://doi.org/10.1248/cpb.42.1101
  25. Possel, H., Noack, H., Putzke, J., Wolf, G. and Sies, H. (2000) Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: in vitro and in vivo studies. Glia 32: 51-59. https://doi.org/10.1002/1098-1136(200010)32:1<51::AID-GLIA50>3.0.CO;2-4
  26. Yuan, G. F., Yuan, J. Q. and Li, D. (2009) Punicic acid from Trichosanthes kirilowii seed oil is rapidly metabolized to conjugated linoleic acid in rats. J. Med. Food 12: 416-422. https://doi.org/10.1089/jmf.2007.0541
  27. Ringbom, T., Huss, U., Stenholm, A., Flock, S., Skattebol, L., Perera, P. and Bohlin, L. (2001) Cox-2 inhibitory effects of naturally occurring and modified fatty acids. J. Nat. Prod. 64: 745-749. https://doi.org/10.1021/np000620d
  28. Yuan, G. F., Yuan, J. Q. and Li, D. (2009) Punicic acid from Trichosanthes kirilowii seed oil is rapidly metabolized to conjugated linoleic acid in rats. J Med. Food. 12: 416-422. https://doi.org/10.1089/jmf.2007.0541
  29. Ringbom, T., Huss, U., Stenholm, A., Flock, S., Skattebol, L., Perera, P. and Bohlin, L. (2001) Cox-2 inhibitory effects of naturally occurring and modified fatty acids. J. Nat. Prod. 64: 745-749. https://doi.org/10.1021/np000620d