DOI QR코드

DOI QR Code

기후변화환경 하에서 멸종위기식물 섬시호(산형과)의 보전방안 마련을 위한 광, 수분, 영양소에 대한 반응 연구

Growth response to Light, Moisture and Nutrients for the Conservation Measures of Bupleurum latissimum(Apiaceae, endangered species) under Future Climate Environment(Elevated CO2 Concentration and Temperature)

  • Ahn, Kyeong-Ho (Department of Life Science, Kongju National University) ;
  • You, Young-Han (Department of Life Science, Kongju National University) ;
  • Cho, Kyu-Tae (Department of Life Science, Kongju National University)
  • 투고 : 2016.09.07
  • 심사 : 2016.10.07
  • 발행 : 2016.10.30

초록

본 연구는 멸종위기식물인 섬시호를 대상으로 기후변화의 원인인 $CO_2+$온도상승과 식물의 생육 및 분포에 중요한 광, 수분, 영양소를 조합 처리하여 지구온난화에 대해 어떻게 반응하는지 알아보고, 기후변화환경 하에서의 보전방안을 마련하고자 하였다. 실험은 야외의 $CO_2$ 농도와 온도를 반영한 대조구와 유리온실에서 대조구보다 $CO_2$ 농도가 약 2배, 온도가 약 $2^{\circ}C$ 높게 유지한 $CO_2+$온도상승구로 구분하여 2010년부터 2011년까지 생육시켜 관찰하고 비교하였다. 섬시호의 생육반응은 광, 수분, 영양소보다 $CO_2+$온도상승의 영향을 더 많이 받았고, $CO_2+$온도상승구에서 영양소가 많은 조건일 때 잘 자랐다. 잎 수는 대조구에 비해 $CO_2+$온도상승구에서 광이 낮은 구배와 영양소가 높은 구배에서 많았고, 잎 폭은 대조구에 비해 $CO_2+$온도상승구에서 광과 영양소가 중간 구배에서 좁았다. 그러나 지상부 길이, 잎몸길이 그리고 잎자루 길이는 대조구와 $CO_2+$온도상승구 간에 차이가 없었다. 본 연구결과를 토대로 미래기후환경 하에서 섬시호의 보전을 위해서는 섬시호 자생지에 ${NH_4}^+$, $NO_3$, $P_2O_5$, $K_2O$ 등이 포함된 영양소를 공급하고, 섬시호 자생지가 파괴되지 않도록 하여야 한다. 또한 섬시호의 자생지와 유사한 환경조건을 가진 곳을 발굴하여 복원함으로써 서식지를 확대하여야 한다.

In order to elucidate the ecological responses of B. latissimum under global warming situation and prepare the conservation measures, we cultivated the plant within control(ambient $CO_2+$ambient temperature) and treatment(elevated $CO_2+$elevated temperature) from 2010 to 2011. Rising $CO_2$ concentration was treated with 2 times and temperature increased with $2.0^{\circ}C$ above than control. As a result, Growth response has received more the effect of $CO_2+$Temperature rising than light, moisture, nutrients, and it was grow well in $CO_2+$temperature rise sphere when many nutrients, and it was grow well in $CO_2+$temperature rise sphere when many nutrients. No. of leaves were many number in the treated group compared to the control at a low light gradient and high nutrient gradient, leaf width was narrow in the treatment compared to the control in the middle gradient of light and nutrients. Shoot length, petiole length, lamina length was no difference between control and $CO_2+$temperature rise sphere. Based on the results of this study, in order to preserve the B. latissimum in future climate, we should be supply of nutrients(containing ${NH_4}^+$, $NO_3$, $P_2O_5$, $K_2O$, etc.) in the habitat of the B. latissimum, and must ensure that the habitat of B. latissimum is not destroyed. Also, We should be find similar area with habitat of the B. latissimum, restoring, expanding.

키워드

참고문헌

  1. Billes, G., H. Rouhier and P. Bottner(1993) Modifications of the carbon and nitrogen allocation in the plant(Triticum aestivum L.) soil system in response to increased atmospheric $CO_2$ concentration. Plant and Soil. 157: 215-225. https://doi.org/10.1007/BF00011050
  2. Bowes, G.(1996) Photosynthetic responses to changing atmospheric carbon dioxide concentration. Photosynthesis and the Environment 5: 387-407.
  3. Campbell, W.J., L.H. Allen Jr and G. Bowes(1988) Effects of $CO_2$concentration on rubisco activity, amount, and photosynthesis in soybean leaves. Plant Physiol. 88: 1310-1316. https://doi.org/10.1104/pp.88.4.1310
  4. Carter, E.B., M.K. Theodorou and P. Morris(1997) Responses of Lotus corniculatus to environmental change I. effects of elevated $CO_2$, temperature and drought on growth and plant development. New Phytologist 136: 245-253. https://doi.org/10.1046/j.1469-8137.1997.00733.x
  5. Chapin, F.S., A.J. Bloom, C.B. Field and R.H. Waring(1987) Plant responses to multiple environmental factors. Bioscience 37: 49-57. https://doi.org/10.2307/1310177
  6. Chapin, F.S., E.S. Zavleta, V.T. Eviner, R.L. Naylor, P.M. Vitousek, H.L. Reynolds, D.U. Hooper, S. Lavorel, O.E. Sala, S.E. Hobbie, M.C. Mack and S. Diaz(2000) Consequences of changing biodiversity. Nature 405: 234-242. https://doi.org/10.1038/35012241
  7. Fischer, M. and D. Matthies(1998) Experimental demography of the rare gentianella germanica: seed bank formation and microsite effects on seedling establishment. Ecography 21: 269-278. https://doi.org/10.1111/j.1600-0587.1998.tb00564.x
  8. Garbutt, K. and F.A. Bazzaz(1984) The effects of elevated $CO_2$ on plants. III. Flower, fruit and seed production and abortion. New Phytologist 98: 433-446. https://doi.org/10.1111/j.1469-8137.1984.tb04136.x
  9. Honisch, B., N.G. Hemming, D. Archer, M. Siddall and J.F. McManus(2009) Atmospheric corbon dioxide concentration across the Mid-Pleistocene transition. Sciecne 324(5934): 1551-1554. https://doi.org/10.1126/science.1171477
  10. Hong, Y.S.(2012) Effects of elevated $CO_2$ concentration and temperature on the phenology, growth response and reproductive ecology of Cicuta virosa, endangered plant in Korea. Mater's Thesis, Kongju National University, Gongju, Korea. (in Korean)
  11. Idso, S. and B. Kimball(1997) Effects of long-term atmospheric $CO_2$ enrichment on the growth and fruit production of sour orange trees. Global Change Biology 3: 89-96. https://doi.org/10.1111/j.1365-2486.1997.gcb134.x
  12. IPCC(2007) Climate change 2007: Mitigation of climate change. Contribution working group III contribution to the fourth as sessment report of the lntergovernmental panel on climate change. Cambridge university press, Cambridge, New york, U.S.A., 176pp.
  13. Kim, H.R. and Y.H. You(2010) Effects of elevated $CO_2$ concentration and temperature on the response of seed germination, phenology and leaf morphology of Phytolacca insularis(endemic species) and Phytolocca americana(alien species). Kor. J. Env. Eco. 24(1): 62-68. (in Korean with English abstract)
  14. Kim, M.Y.(2004) Korean endemic plants. Sol Publisher. Korea. 136pp. (in Korean)
  15. Kim, M.Y., S.K. So, H.R. Park, E.K. Seo, H.J. Kwon and H.K. Song(2006) Articles: Ecology of Bupleurum latissimum Population. J. Korean Env. Res. & Reveg. Tech. 9(6): 78-85. (in Korean with English abstract)
  16. Kim, S.Y. and H.J. Kang(2003) Effects of elevated atmospheric $CO_2$ on wetland plants: a review. Korean J. Limnol. 36(4): 391-402. (in Korean with English abstract)
  17. Kimball, B.A., J.R. Mauney, F.S. Nakayama and S.B. Idso(1993) Effects of increasing atmospheric $CO_2$ on vegetation. Vegetatio 104/105: 65-75. https://doi.org/10.1007/BF00048145
  18. Korea Meteorological administration(2009) Climatological Phenomenon of Korea. Seoul, Korea, 15pp. (in Korean)
  19. Korea Meteorological administration(2010) Report of Global Atmosphere Watch 2010. Seoul, Korea, 239pp. (in Korean)
  20. Larcher, W.(2003) Physiological plant ecology. 4th ed. Springer. 488pp.
  21. Lee, S.H., J.K. Jeong, K.T. Cho, R.H. Jang, Y.S. Han and Y.H.You(2013) Effect of Elevated $CO_2$ Concentration and Temperature on the Phenology and Reproductive Ecological Characteristics of Bupleurum Latissimum (Endangered plant). Kor. J. Ecol. Environ. 46(3): 380-387. (in Korean with English abstract) https://doi.org/10.11614/KSL.2013.46.3.380
  22. Leishman, M.R., K.J. Sanbrooke and R.M. Woodfin(1999) The effects of elevated $CO_2$ and light environment on growth and reproductive performance of four annual species. New Phytologist 144: 455-462. https://doi.org/10.1046/j.1469-8137.1999.00544.x
  23. Mor Y. and A. H. Halevy(1980) Promotion of sink activity of developing rose shoots by light. Plant Physiol. 66: 990-995. https://doi.org/10.1104/pp.66.5.990
  24. Morison, J.I.L.(2001) Increasing atmospheric $CO_2$ and stomata. New Phytologist 149: 154-158. https://doi.org/10.1046/j.1469-8137.2001.00042.x
  25. No H.J. and H.Y. Jung(2002) Well-defined statistical analysis according to statistica. Hyeong-seok Publisher. Korea. 336pp. (in Korean)
  26. Onoda, Y., T. Hirose and K. Hikosaka(2009) Does leaf photosynthesis adapt to $CO_2$-enriched environments? An experiment on plants originating from three natural $CO_2$ springs. New Phytologist 182: 698-709. https://doi.org/10.1111/j.1469-8137.2009.02786.x
  27. Park, H.R.(2003) Grobal warming, these effect and prevention. Wooyoung Publisher. Korea. 285pp. (in Korean)
  28. Pinter, P.J., B.A. Kimball, G.W. Wall, D.J. Hunsaker and R.L. Lamorte(1996) Free-air $CO_2$ enrichment: responses of cotton and wheat crops. In Carbon Dioxide and Terrestrial Ecosystems(eds G. W. Koch and H. A. Mooney). Academic Press, San Diego, CA. pp. 215-250.
  29. Poorter, H. and M. Perez-Soba(2002) Plant growth at elevated $CO_2$. Encyclopedia of Global Environmental Change. pp. 489-496.
  30. Schütz, M. and A. Fangmeier(2001) Growth and yield responses of spring wheat(Triticum aestivum L. cv. Minaret) to elevated $CO_2$and water limitation. Environmental Pollution 114: 187-194. https://doi.org/10.1016/S0269-7491(00)00215-3
  31. Thomas, C.D., A. Cameron, R.E. Green, M. Bakkenes, L.J. Beaumont, Y.C. Collingham, B.F.N. Erasmus, M.F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A.S. van Jaarsveld, G.F. Midgley, L. Miles, M.A. Ortega-Huerta, A.T. Peterson, O.L. Phillips and S.E. Williams(2004) Extinction risk from climate change. Nature 427: 145-148. https://doi.org/10.1038/nature02121
  32. Usuda, H. and K. Simogawara(1998) The effects of increased atmospheric carbon dioxide on growth, carbohydrates, and photosynthesis in radish, Raphanus sativus. Plant and Cell Physiology 39: 1-7. https://doi.org/10.1093/oxfordjournals.pcp.a029280
  33. Yoon, S.T., G. Hoogenboom, I. Flitcroft and M. Bannayan(2009) Growth and development of cotton (Gossypium hirsutum L.) in response to $CO_2$ enrichment under two different temperature regimes. Environmental and Experimental Botany 67: 178-187. https://doi.org/10.1016/j.envexpbot.2009.06.015
  34. Zhu, J., G. Goldstein and D.P. Bartholomew(1999) Gas exchange and carbon isotope composition of Ananas comosus in response to elevated $CO_2$ and temperature. Plant, Cell & Environment 22: 999-1007. https://doi.org/10.1046/j.1365-3040.1999.00451.x