DOI QR코드

DOI QR Code

Nonlinear Finite Element Analysis for RC Shear Wall with an Opening Considering Rebar Development Length

철근 정착길이를 고려한 개구부가 있는 철근콘크리트 전단벽의 유한요소해석

  • Choi, Yun-Bum (Department of NPP Engineering, Kepco International Nuclear Graduate School) ;
  • Lee, Seong-Cheol (Department of NPP Engineering, Kepco International Nuclear Graduate School)
  • 최윤범 (국제원자력대학원대학교 원자력산업학과) ;
  • 이성철 (국제원자력대학원대학교 원자력산업학과)
  • Received : 2016.10.10
  • Accepted : 2016.11.02
  • Published : 2016.12.30

Abstract

In this study, nonlinear finite element analysis based on the Modified Compression Field Theory has been conducted to evaluate shear strength of RC walls with opening. On the analysis, reinforcement ratio within development length of rebars nearby the opening was reduced in the model in order to investigate the effect of opening on shear strength of RC shear walls. The nonlinear finite element analysis has been verified through comparison with the test result in literature. Through the verification, it was investigated that the analysis considering the development length of rebars well reflected the effect of an opening on shear strength of RC shear walls while current design provisions did not reasonably consider one.

본 논문에서는 개구부가 있는 철근콘크리트 전단벽의 전단강도를 산정하기 위해 수정압축장 이론에 기반을 둔 비선형 유한요소해석을 수행하였다. 철근콘크리트 전단벽의 전단강도에서 개구부의 영향을 분석하기 위해 개구부 주변 정착길이 내 철근들에 대한 철근비를 해석 모델에서 감소시켰으며, 비선형 유한요소해석은 기존 문헌에 제시된 시험 결과와의 비교를 통해 검증되었다. 실험 결과와의 비교를 통해 개구부 주변 철근들의 정착길이를 고려한 비선형 유한요소해석의 경우 철근콘크리트 전단벽의 전단강도 예측에 있어 개구부의 영향을 잘 반영한 것으로 나타났다. 이에 반해, 현행 설계기준들은 전단강도를 합리적으로 예측하지 못하는 것으로 나타났다. 본 논문은 향후 기존 철근콘크리트 전단벽에 개구부를 설치하는 경우, 전단벽의 합리적인 전단강도 예측에 유용할 것으로 기대된다.

Keywords

References

  1. ACI Committee 318 (2014) Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, American Concrete Institute, Farmington Hills, MI, USA, pp.293-294.
  2. AIJ (1993) AIJ Standard for Structural Calculation of Reinforced Concrete Structures, Archi. Inst. Japan, version6, pp.221-239.
  3. Bentz, E.C. (2005) Explaining the Riddle of Tension Stiffening Models for Shear Panel Experiments, ASCE J. Struct. Eng., 131(9), pp.1422-1425. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:9(1422)
  4. KEPIC (2010) SGB Reinforced Concrete Structure, p.300.
  5. Kim, S.W., Han, B.C., Kim, H.J., Choi, G.B., Choi, C.S., Yun, H.D. (2004) Experimental Study on Artificially Damaged Rectangular R/C Shear Walls with Opening Configurations, Proc. Korea Concr. Inst., 24(2).
  6. MOLIT (2012) Concrete Structure Specifications, p.342.
  7. Vecchio, F.J. (2000) Disturbed Stress Field Model for Reinforced Concrete: Formulation, ASCE J. Struct. Eng., 126(9), pp.1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
  8. Vecchio, F.J., Collins, M.P. (1986) The Modified Compression Field Theroy for Reinforced Concrete Elements Subject to Shear, ACI J., 83(2), pp.219-231.
  9. Vecchio, F.J., Collins, M.P. (1993) Compression Response of Cracked Reinforced Concrete, ASCE J. Struct. Eng., 119(12), pp.3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
  10. Wong, P.S., Vecchio, F.J., Trommels, H. (2013) VecTor2 FormWorks User's Manual, Second Edition, University of Toronto, Canada, p.318.
  11. Yun, H.D., Han, M.K. (2006) A Nonlinear Finite Element Analysis on Behavior of Existing Full Scase Reinforced Concrete Shear Walls with Artificially-Introduced Opening, J. Archi. Inst. Korea, 22(7), pp.3-10.