DOI QR코드

DOI QR Code

Static and Free Vibration Analysis of FGM Plates on Pasternak Elastic Foundation

Pasternak 탄성지반위에 놓인 점진기능재료 판의 정적 및 자유진동 해석

  • Lee, Won-Hong (Department of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Han, Sung-Cheon (Department of Civil & Railroad Engineering, Daewon University College) ;
  • Park, Weon-Tae (Division of Construction and Environmental Engineering Kongju National University)
  • 이원홍 (경남과학기술대학교 토목공학과) ;
  • 한성천 (대원대학교 철도건설과) ;
  • 박원태 (공주대학교 건설환경공학부)
  • Received : 2016.09.26
  • Accepted : 2016.11.07
  • Published : 2016.12.30

Abstract

The simplified plate theory is presented for static and free vibration analysis of power-law(P) and sigmoid(S) Functionally Graded Materials(FGM) plates. This theory considers the parabolic distribution of the transverse shear stress, and satisfies the condition that requires the transverse shear stress to be zero on the upper and lower surfaces of the plate, without the shear correction factor. The simplified plate theory uses only four unknown variables and shares strong similarities with classical plate theory(CPT) in many aspects such as stress-resultant expressions, equation of motion and boundary conditions. The material properties of the plate are assumed to vary according to the power-law and sigmoid distributions of the volume fractions of the constituents. The Hamilton's principle is used to derive the equations of motion and Winkler-Pasternak elastic foundation model is employed. The results of static and dynamic responses for a simply supported FGM plate are calculated and a comparative analysis is carried out. The results of the comparative analysis with the solutions of references show relevant and accurate results for static and free vibration problems of FGM plates. Analytical solutions for the static and free vibration problems are presented so as to reveal the effects of the power law index, elastic foundation parameter, and side-to-thickness ratio.

멱 법칙 및 S 형상 함수를 이용한 점진기능재료(FGM) 판의 정적 및 동적해석을 위해 단순화된 전단변형이 고려된 이론을 정식화 하여 동적 평형방정식을 유도하였다. 단순화된 전단변형 이론은 전단보정계수가 필요없으며 수직 전단변형률과 전단응력의 곡선분포를 고려하였고 판의 상부와 하부에서 0이 된다는 조건을 만족한다. 또한 4개의 변수만으로 평형방정식이 유도되고 합응력, 평형방정식 그리고 경계조건이 고전적 이론과 유사한 형태를 가지게 된다. 점진기능재료의 형태는 멱 법칙 및 S 형상 함수로 두께방향으로 변화가 고려된다. Hamilton 원리를 이용하여 동적 평형방정식을 유도하였고 Winkler-Pasternak 탄성지반 모델을 적용하였다. 단순지지된 점진기능재료 판의 정적 및 자유진동 응답을 계산하였고 비교하였다. 본 연구에서 제시한 결과는 참고문헌과 비교하여 정확하고 관련성을 가진다. 거듭제곱 지수, 탄성지반 계수 그리고 폭-두께비의 변화에 따른 정적 및 자유진동 해석결과를 제시하였다.

Keywords

References

  1. Bao, G., Wang, L. (1995) Multiple Cracking in Functionally Graded Ceramic/Metal Coatings, Int. J. Solids & Struct., 32, pp.2853-2871. https://doi.org/10.1016/0020-7683(94)00267-Z
  2. Benachour, A., Daouadji, T.H., Ait Atmanea, H., Tounsi, A., Ahmed, M.S. (2011) A Four Variable Refined Plate Theory for Free Vibrations of Functionally Graded Plates with Arbitrary Gradient, Compos. Part B: Eng., 42, pp.1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  3. Bourada, M., Tounsi, A., Houari, M.S.A. (2012) A New Four-variable Refined Plate Theory for Thermal Buckling Analysis of Functionally Graded Sandwich Plates, J. Sandwich Struct. & Mater., 14, pp.5-33. https://doi.org/10.1177/1099636211426386
  4. Han, S.C., Yoon, S.H., Chang, S.Y. (1997) Bending and Dynamic Characteristics of Antisymmetric Laminated Composite Plates Considering a Simplified Higher-order Shear Deformation, J. KSSC, 9(4), pp.601-609.
  5. Hosseini-Hashemi, S., Fadaee, M., Atashipour, S.R. (2011) Study on the Free Vibration of Thick Functionally Graded Rectangular Plates according to a New Exact Closed-form Procedure, Compos. Struct., 93, pp.722-735. https://doi.org/10.1016/j.compstruct.2010.08.007
  6. Jung, W.Y., Park, W.T., Han, S.C. (2014) Bending and Vibration Analysis of S-FGM Microplates Embedded in Pasternak Elastic Medium using the Modified Couple Stress Theory, Int. J. Mech. Sci., 87, pp.150-162. https://doi.org/10.1016/j.ijmecsci.2014.05.025
  7. Karama, M., Afaq, K.S., Mistou, S. (2003) Mechanical behavior of Laminated Composite Beam the New Multilayered Laminated Composite Structures Model with Transverse Shear Stress Continuity, Int. J. Solids & Struct., 40(6), pp.1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  8. Lee, W.H., Han, S.C., Park, W.T. (2015) A Study of Dynamic Instability for Sigmoid Functionally Graded Material Plates on Pasternak Elastic Foundation, J. Coumput. Struct. Eng. Inst. Korea, 28(1), pp.85-92. https://doi.org/10.7734/COSEIK.2015.28.1.85
  9. Malekzadeh, P., Shojaee, M. (2013) Free Vibration of Nanoplates based on a Nonlocal Two-variable Refined Plate Theory, Compos. Struct., 95, pp.443-452. https://doi.org/10.1016/j.compstruct.2012.07.006
  10. Mantari, J.L., Guedes Soares, C. (2014) Optimized Sinusoidal Higher Order Shear Deformation Theory for the Analysis of Functionally Graded Plates and Shells, Compos. Part B: Eng., 56, pp.126-136. https://doi.org/10.1016/j.compositesb.2013.07.027
  11. Mantari, J.L., Oktem, A.S., Guedes Soares, C. (2012) A New Trigonometric Shear Deformation Theory for Isotropic, Laminated Composite and Sandwich Plates, Int. J. Solids & Struct., 49, pp.42-53.
  12. Matsunaga, H. (2008) Free Vibration and Stability of Functionally Graded Plates according to a 2-D Higher-order Deformation Theory, Compos. Struct., 82, pp.499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
  13. Mechab, I., Mechab, B., Benaissa, S. (2013) Static and Dynamic Analysis of Functionally Graded Plates using Four-variable Refined Plate Theory by the New Function, Compos. Part B: Eng., 45, pp.748-757. https://doi.org/10.1016/j.compositesb.2012.07.015
  14. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.M. (2013) Static, Free Vibration and Buckling Analysis of Isotropic and Sandwich Functionally Graded Plates using a Quasi-3D Higher-order shear Deformation Theory and a Meshless Technique, Compos. Part B: Eng., 44(1), pp.657-674. https://doi.org/10.1016/j.compositesb.2012.01.089
  15. Reddy, J.N. (2000) Analysis of Functionally Graded Plates, Int. J. Numer. Methods Eng., 47, pp.663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  16. Reddy, J.N. (2007) Theory and Analysis of Elastic Plates and Shells, CRC Press, London.
  17. Senthilnathan, N.R., Chow, S.T., Lee, K.H., Lim, S.P. (1987) Buckling of Shear-deformable Plates, AIAA J., 25, pp.1268-1271. https://doi.org/10.2514/3.48742
  18. Shimpi, R.P., Patel, H.G. (2006a) Free Vibrations of Plate using Two Variable Refined Plate Theory, J. Sound & Vib., 296, pp.979-999. https://doi.org/10.1016/j.jsv.2006.03.030
  19. Shimpi, R.P., Patel, H.G. (2006b) A Two Variable Refined Plate Theory for Orthotropic Plate Analysis, Int. J. Solids & Struct., 43, pp.6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
  20. Thai, H.T., Choi, D.H. (2013) A Simple First-order Shear Deformation Theory for the Bending and Free Vibration Analysis of Functionally Graded Plates, Compos. Struct., 101, pp.332-340. https://doi.org/10.1016/j.compstruct.2013.02.019
  21. Thai, H.T., Kim, S.E. (2010) Free Vibration of Laminated Composite Plates using Two Variable Refined Plate Theory, Int. J. Mech. Sci., 52, pp.626-633. https://doi.org/10.1016/j.ijmecsci.2010.01.002
  22. Touratier, M. (1991) An Efficient Standard Plate Theory, Int. J. Eng. Sci., 29(8), pp.901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  23. Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H. (2013) Isogeometric Analysis of Functionally Graded Plates using Higher-order Shear Deformation Theory, Compos. Part B: Eng., 51, pp.368-383. https://doi.org/10.1016/j.compositesb.2013.02.045
  24. Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X., Yang, M.S. (2011) A n-order Shear Deformation Theory for Free Vibration of Functionally Graded and Composite Sandwich Plates, Compos. Struct., 93(11), pp.2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022
  25. Zenkour, A.M. (2006) Generalized Shear Deformation Theory for Bending Analysis of Functionally Graded Plates, Appl. Math. Model., 30, pp.67-84. https://doi.org/10.1016/j.apm.2005.03.009

Cited by

  1. Microstructure Generation and Linearly Elastic Characteristic Analysis of Hierarchical Models for Dual-Phase Composite Materials vol.31, pp.3, 2018, https://doi.org/10.7734/COSEIK.2018.31.3.133