DOI QR코드

DOI QR Code

레이저진동계를 사용한 동조액체댐퍼의 액체 진동 측정

Measurement of Liquid Oscillation in Tuned Liquid Dampers using a Laser Doppler Vibrometer

  • Shin, Yoon-Soo (Division of Architectural Engineering, DanKook Univ.) ;
  • Min, Kyung-Won (Division of Architectural Engineering, DanKook Univ.) ;
  • Kim, Junhee (Division of Architectural Engineering, DanKook Univ.)
  • 투고 : 2016.08.30
  • 심사 : 2016.09.30
  • 발행 : 2016.12.30

초록

본 논문에서는 기존 파고 측정 센서의 한계를 극복하기 위하여 레이저 장비 중 LDV를 이용하여 동조액체기둥감쇠기 안의 액체의 파고를 측정하는 방법을 제안하고 검증하였다. 비접촉 센서의 장점과 LDV가 속도와 변위를 측정하는 원리를 기술하였고 대상 물체가 액체인 경우에 요구되는 사항들에 대하여 실험적으로 파악하였다. 투명한 액체는 레이저 광선을 대부분 투과시켜 LDV에 되돌아오는 광량이 부족해 측정이 불가능함을 확인하였고 이를 증가시키기 위해 염료를 혼합하였다. 이때, 염료의 색에 따라 광량에 차이가 발생함을 확인하여 LDV에 사용된 레이저 광선의 파장과 연관된 결과를 도출하였다. 염료를 혼합한 후 광량이 충분한 경우에도 발생하는 데이터의 오차를 제거하기 위해 염료의 농도를 변화시키며 그에 따른 데이터의 정확도를 파악하였다. 결과적으로 모든 가시광선의 빛을 반사시키는 흰색의 염료를 충분한 농도로 혼합하였을 때 LDV를 이용한 TLCD의 파고 측정의 실험적인 결과가 용량식 파고계와 일치함을 확인하였다.

In this study, dynamic vertical displacement of liquid in the tuned liquid column damper(TLCD) is measured by a laser Doppler vibrometer(LDV) to overcome limitations of existing sensors and to leverage noncontact sensing. Addressing advantages of noncontact measurements, operational principles of the LDV to measure velocity and displacement of a target object in motion is explained. The feasibility of application of the LDV to measurement of liquid motion in the TLCD is experimentally explored. A series of shake table tests with the TLCD are performed to determine requirements of application of the LDV. Based on the experimental results, it is proved that the LDV works under the condition of adding dye to the liquid by increasing the intensity of reflected laser and thus validity is verified by comparison with a conventional wave height meter.

키워드

참고문헌

  1. Abellan, A., Vilaplana, J.M., Martinezc, J. (2006) Application of a Long-Range Terrestrial Laser Scanner to a Detailed Rockfall Study at Vall De Núria (Eastern Pyrenees, Spain), Eng. Geol., 88, pp.136-148. https://doi.org/10.1016/j.enggeo.2006.09.012
  2. Hani, H.N., Mayrai, G., Joe, D. (2005) Comparison of Laser Doppler Vibrometer with Contact Sensors for Monitoring Bridge Deflection and Vibration, NDT & E Int., 38, pp.213-218. https://doi.org/10.1016/j.ndteint.2004.06.012
  3. Jan, P.B.V. (2005) Spacecraft Maneuvers and Slosh Control, 2005 IEEE Control Sys., 25, pp.12-16
  4. Jang, S.J., Kim, J.H., Min, K.W. (2015) Development of Variable Voltage Sensing for Identification of Dynamic Characteristics of TLCDs, J. Comput. Struct. Eng. Inst. Korea, 28(3), pp.275-282. https://doi.org/10.7734/COSEIK.2015.28.3.275
  5. Kazuaki, S., Takahiro, O., Takeshi, H., Hidekuni, T., Makoto, I. (2005) A Novel Fused Sensor for Photo- and Ion-Sensing, Sensors & Actuators B: Chemical, 106, pp.614-618. https://doi.org/10.1016/j.snb.2004.07.029
  6. Kazuhiko, T., Kenichi, Y. (2001) Sloshing Analysis and Suppression Control of Tilting-type Automatic Pouring Machine, Control Eng. Pract., 9, pp.607-620. https://doi.org/10.1016/S0967-0661(01)00023-5
  7. Kenichi, Y, Kazuhiko, T. (2005) Sloshing Suppression Control of Liquid Transfer Systems Considering a 3-D Transfer Path, IEEE Trans. Control Sys. Tech., 9, pp.483-493.
  8. Kenichi, Y., Kazuhiko, T. (2001) Robust Liquid Container Transfer Control for Complete Sloshing Suppression, IEEE Trans. Control Sys. Tech., 9 pp.483-493. https://doi.org/10.1109/87.918901
  9. Kenichi, Y., Shimpei, H., Kazuhiko. T. (2002) Motion Control of Liquid Container Considering an Inclined Transfer Path, Control Eng. Pract., pp.465-472.
  10. Kim, J.H., Kim, K.Y., Sohn, H. (2013) In Situ Measurement of Structural Mass, Stiffness, and Damping using a Reaction Force Actuator and a Laser Doppler Vibrometer, Smart Mater. & Struct., 22, 085004. https://doi.org/10.1088/0964-1726/22/8/085004
  11. Kim, J.H., Kim, K.Y., Sohn, H. (2014) Autonomous Dynamic Displacement Estimation from Data Fusion of Acceleration and Intermittent Displacement Measurements, Mech. Sys. & Signal Proc., 42, pp.194-205. https://doi.org/10.1016/j.ymssp.2013.09.014
  12. Kim, J.H., Park, C.S., Min, K.W. (2015) Easy-to-Tune Reconfigurable Liquid Column Vibration Absorbers with Multiple Cells, Smart Mater.& Struct., 24, 065041. https://doi.org/10.1088/0964-1726/24/6/065041
  13. Kim, J.H., Park, C.S., Min, K.W. (2016) Fast Vision-based Wave Height Measurement for Dynamic Characterization of Tuned Liquid Column Dampers, Measurement, 89, pp.189-196. https://doi.org/10.1016/j.measurement.2016.04.030
  14. Kim, K.Y., Kim, J.H. (2015) Dynamic Displacement Measurement of a Vibratory Object using a Terrestrial Laserscanner, Measurement Sci. & Tech., 045002.
  15. Kim, K.Y., Kim, J.H., Sohn, H. (2016) Development and Full-Scale Dynamic Test of a Combined System of Heterogeneous Laser Sensors for Structural Displacement Measurement, Smart Mater.& Struct., 25, pp.65015-65028. https://doi.org/10.1088/0964-1726/25/6/065015
  16. Lee, S.K., Lee, H.R., Min, K.W. (2012) Experimental Verification on Nonlinear Dynamic Characteristic of a Tuned Liquid Column Damper Subjected to Various Excitation Amplitudes, Struct. Design Tall & Special Build., 21, pp.374-388. https://doi.org/10.1002/tal.606
  17. Lee, S.K., Min, K.W., Park, J.H. (2009) Experimental Evaluation of Design Parameters for TLCD and LCVA, J. Comput. Struct. Eng. Inst. Korea, 22(5), pp.403-410.
  18. Mattias, G., Bo, B. (1999) Control of Liquid Slosh in an Industrial Packaging Machine, IEEE Int. Conf., 2 pp.1654-1659.
  19. Mattias, G., Bo, B. (2000) Constrained Iterative Learning Control of Liquid Slosh in an Industrial Packaging Machine, IEEE Decision & Control, 5, pp.4544-4549.
  20. Min, K.W., Kim, Y.W., Kim, J.H. (2015) Analytical and Experimental Investigations on Performance of Tuned Liquid Column Dampers with Various Orifices to Wind-excited Structural Vibration, J. Wind Eng. & Indus. Aerodyn., 139, pp.62-69. https://doi.org/10.1016/j.jweia.2015.01.014

피인용 문헌

  1. Measurement System of Dynamic Liquid Motion using a Laser Doppler Vibrometer and Galvanometer Scanner vol.31, pp.5, 2018, https://doi.org/10.7734/COSEIK.2018.31.5.227