DOI QR코드

DOI QR Code

Transcriptional Analysis of Genes Involved in Ectopic Sporulation in Streptomyces griseus

Streptomyces griseus의 특이적 포자형성에 관여하는 유전자의 전사량 분석

  • Chi, Won-Jae (Biological and Genetic Resources Assessment Division, National Institute of Biological Resource)
  • 지원재 (국립생물자원관 생물자원활용부 유용자원분석과)
  • Received : 2016.07.26
  • Accepted : 2016.10.01
  • Published : 2016.12.28

Abstract

Two Streptomyces griseus strains, a wild-type strain and an A-factor-dependent transcriptional activator mutant strain harboring multiple copies of a gene, dasA, that encodes a substrate-binding protein of the ATP-binding cassette transporter, showed severe ectopic sporulation of young substrate hyphae in response to glucose. The effect of dasA overexpression on the ectopic sporulation of Streptomyces strains was evaluated by comparing the transcriptomes of the strain harboring multiple copies of dasA and a strain harboring empty vector. By DNA microarray, 4 genes (SGR794, SGR2469, SGR3656, and SGR3657) and 3 clusters (SGR795-797, SGR2377-2378, and SGR6997-6998) were differentially expressed by more than 2-fold in S. griseus strains harboring dasA. The DNA microarray result was validated by low-resolution S1 nuclease mapping.

S. griseus wild type에서 dasA 유전자의 과발현에 의해 유도된 기저균사의 ectopic sporulation 관련 유전자를 알아보기 위해서, empty vector가 삽입된 균주와 dasA가 과발현된 균주의 전사체를 DNA microarray법으로 비교하였다. DNA microarray 결과를 토대로 dasA 유전자 과발현 균주에서 2배이상 발현량이 증가되었으며 p-value가 0.05 미만(p-value < 0.05)인 유전자들 중에서 false positive 를 제외시키는 작업을 통하여 최종적으로 4개의 유전자(SGR794, SGR2469, SGR3656, SGR3657)와 3개의 cluster (SGR795-797, SGR2377-2378, SGR6997-6998)를 선발하였다. 이들의 전사량은 low resolution Sl nuclease mapping 법을 통하여 dasA 유전자 과발현 균주에서 증가된 것을 확인하였다.

Keywords

References

  1. Akanuma G, Hara H, Ohnishi Y, Horinouchi S. 2009. Dynamic changes in the extracellular proteome caused by absence of a pleiotropic regulator AdpA in Streptomyces griseus. Mol. Microbiol. 73: 898-912. https://doi.org/10.1111/j.1365-2958.2009.06814.x
  2. Chi WJ, Lee SY, Lee J. 2011. Functional analysis of SGR4635-induced enhancement of pigmented antibiotic production in Streptomyces lividans. J. Microbiol. 49: 828-833. https://doi.org/10.1007/s12275-011-1100-7
  3. Hara H, Ohnishi Y, Horinouchi S. 2009. DNA microarray analysis of global gene regulation by A-factor in Streptomyces griseus. Microbiology 155: 2197-2210. https://doi.org/10.1099/mic.0.027862-0
  4. Hillerich B, Westpheling J. 2006. A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J. Bacteriol. 188: 7477-7487. https://doi.org/10.1128/JB.00898-06
  5. Horinouchi S. 2007. Mining and polishing of the treasure trove in the bacterial genus streptomyces. Biosci. Biotechnol. Biochem. 71: 283-299. https://doi.org/10.1271/bbb.60627
  6. Jiang H, Kendrick KE. 2000. Characterization of ssfR and ssgA, two genes involved in sporulation of Streptomyces griseus. J. Bacteriol. 182: 5521-5529. https://doi.org/10.1128/JB.182.19.5521-5529.2000
  7. Kato JY, Chi WJ, Ohnishi Y, Hong SK, Horinouchi S. 2005. Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187: 286-295. https://doi.org/10.1128/JB.187.1.286-295.2005
  8. Keiser BJ, van Wezel GP, Canters GW, Kieser T, Vijgenboom E. 2000. The ram-dependence of Streptomyces lividans differentiation is bypassed by copper. J. Mol. Microbiol . Biotechnol. 2: 565-574.
  9. Li M, Chen Z, Zhang X, Song Y, Wen Y, Li J. 2010. Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis. Bioresour. Technol. 101: 9228-9235. https://doi.org/10.1016/j.biortech.2010.06.132
  10. Nazari B, Kobayashi M, Saito A, Hassaninasab A, Miyashita K, Fujii T. 2013. Chitin-induced gene expression in secondary metabolic pathways of Streptomyces coelicolor A3(2) grown in soil. Appl. Environ. Microbiol. 79: 707-713. https://doi.org/10.1128/AEM.02217-12
  11. Ochi K, Okamoto S. 1998. An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. Mol. Microbiol. 30: 107-119. https://doi.org/10.1046/j.1365-2958.1998.01042.x
  12. Ohnishi Y, Seo JW, Horinouchi S. 2002. Deprogrammed sporulation in Streptomyces. FEMS Microbiol. Lett. 216: 1-7. https://doi.org/10.1111/j.1574-6968.2002.tb11406.x
  13. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, et al. 2008. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO13350. J. Bacteriol. 190: 4050-4060. https://doi.org/10.1128/JB.00204-08
  14. Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Müller M, et al. 2006. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 61: 1237-1251. https://doi.org/10.1111/j.1365-2958.2006.05319.x
  15. Rozas D, Gullón S, Mellado RP. 2012. A novel two-component system involved in the transition to secondary metabolism in Streptomyces coelicolor. PLoS One 7: e31760. doi: 10.1371/journal.pone.0031760.
  16. Seo JW, Ohnishi Y, Hirata A, Horinouchi S. 2002. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J. Bacteriol. 184: 91-103. https://doi.org/10.1128/JB.184.1.91-103.2002
  17. Yu Z, Zhu H, Zheng G, Jiang W, Lu Y. 2014. A genome-wide transcriptomic analysis reveals diverse roles of the two-component system DraR-K in the physiological and morphological differentiation of Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 98: 9351-9363. https://doi.org/10.1007/s00253-014-6102-z